

AFRL-RY-WP-TR-2008-1262

A FRAMEWORK FOR RETARGETING RADIO DESIGNS

Dr. Gary J. Minden, Dr. Joseph B. Evans, Dr. W. Perry Alexander, Ed Komp, and
Garrin Kimmel

The University of Kansas Center for Research, Inc.

AUGUST 2008
Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects Agency
(DARPA) and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RY-WP-TR-2008-1262 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH THE ASSIGNED DISTRIBUTION STATEMENT.

*//signature// //signature//
______________________________________ ______________________________________
ALFRED SCARPELLI BRADLEY J. PAUL
Project Engineer Chief, Advanced Sensor Components Branch
Advanced Sensor Components Branch Aerospace Components and Subsystems
Aerospace Components and Subsystems Technology Division
 Technology Division Sensors Directorate

//signature//

TODD A. KASTLE
Chief, Aerospace Components and Subsystems
 Technology Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//signature//” stamped or typed above the signature blocks.

 i

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

August 2008 Final 10 August 2007 – 30 August 2008
4. TITLE AND SUBTITLE

A FRAMEWORK FOR RETARGETING RADIO DESIGNS
5a. CONTRACT NUMBER

FA8650-07-C-7733
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

69199F
6. AUTHOR(S)

Dr. Gary J. Minden, Dr. Joseph B. Evans, Dr. W. Perry Alexander, Ed Komp, and
 Garrin Kimmel

5d. PROJECT NUMBER

ARPS
5e. TASK NUMBER

ND
5f. WORK UNIT NUMBER

 ARPSNDBL
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

The University of Kansas Center for Research, Inc.
Information and Telecommunications Technology Center
2385 Irving Hill Road
Lawrence, KS 66045

 ITTC-FY2009-TR-48370-01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

DARPA/STO
3701 Fairfax Drive
Arlington, VA 22203-1714

AFRL/RYDI
11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

 AFRL-RY-WP-TR-2008-1262

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

PAO case number: DISTAR 12837; date cleared: 23 Feb 2009. This report contains color.

14. ABSTRACT

We address the process of designing software defined radios. Our goal is to design radio functions once and use
automated tools to transform the design to implementations on different platforms. ReTarget is an approach and a
process that (1) describes radio functions in a specification language, Rosetta, (2) translates specifications to an
intermediate language suitable for hardware and software implementation, and (3) translates the intermediate language to
VHDL and C programs. In this feasibility study, we demonstrated specifying radio functions in a high level language,
translation to an intermediate language, and further translation to an implementation language. A number of issues arose
during the study. Specifically, (1) what mechanisms, that are compatible with both hardware and software
implementation, should be used to exchange information between radio functions and (2) how to set up control and
management of radio function in this primarily data-flow oriented domain.

15. SUBJECT TERMS

software defined radio, system level design, flexible radio design, agile radios, dynamic spectrum access, automated
design, Rosetta

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 66

19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Alfred J. Scarpelli
19b. TELEPHONE NUMBER (Include Area Code)

N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

 iii

Table of Contents
Section Page

1 EXECUTIVE SUMMARY... 1

2 INTRODUCTION.. 3

3 FEASIBILITY STUDY IMPLEMENTATION .. 4
3.1 ROSETTA SPECIFICATION LANGUAGE... 5
3.2 THE INTERMEDIATE LANGUAGE DLANG .. 5
3.3 IMPLEMENTATION LANGUAGES ... 6
3.4 EXAMPLES... 6

3.4.1 Examples of Rosetta... 6
3.4.2 Examples of dlang.. 7
3.4.3 Example of Generated Code ... 9

4 RETARGET SYSTEM ARCHITECTURE .. 11
4.1 THE DLANG INTERMEDIATE LANGUAGE ..11
4.2 COMPARISON OF DLANG TO OTHER HARDWARE DESCRIPTION LANGUAGES16

4.2.1 VHDL and Verilog ...16
4.2.2 Lava, Hawk, and Ruby... 16
4.2.3 SAFL ... 17

5 INTER-FUNCTION COMMUNICATIONS ..18

6 RESULTS..20
6.1 LESSONS LEARNED.. 20
6.2 CONCLUSIONS .. 20

7 FUTURE..21

8 REFERENCES... 22

APPENDIX A – EXTERNAL PRESENTATIONS ...23

APPENDIX B – EXAMPLE OF HUFFMAN ENCODER... 24
B.1 ROSETTA SPECIFICATION FOR HUFFMAN COMPRESSOR .. 25
B.2 DLANG DESCRIPTION OF THE HUFFMAN COMPRESSOR .. 27
B.3 AUTOMATICALLY GENERATED DLANG DESCRIPTION OF THE HUFFMAN COMPRESSOR FROM

ROSETTA SPECIFICATION .. 31
B.4 AUTOMATICALLY GENERATED C DESCRIPTION OF THE HUFFMAN COMPRESSOR FROM HAND-

CODED DLANG ... 34
APPENDIX C – ROSETTA SPECIFICATIONS..45

C.1 ADVANCED ENCRYPTION STANDARD (AES)... 45
C.2 STANDARD MODULATION SPECIFICATIONS.. 51

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS... 57

 iv

List of Figures

Figure Page

Figure 1 The ReTarget Concept...4
Figure 2 The Program Flow from a Rosetta Specifications to Final C or VHDL Program....11
Figure 3 Two Mechanisms for Inter-Function Communications ..14
Figure 4 A Typical Software-Defined Radio Processing Flow...18
Figure 5 The Inter-Function Communications between Radio Functions19

 1

1 Executive Summary

This work addresses the design of software-defined radios. In particular, we address the
challenge of re-using radio designs to implement multiple physical radios using multiple
implementation fabrics.

Software defined radios (SDRs) offer the capability of quickly changing the capabilities
of a radio by re-programming the hardware platform. The Joint Tactical Radio System
(JTRS) [1] is the acme of sophisticated SDRs. However, the approach taken in the JTRS
program is to define a Software Communications Architecture (SCA) [2] that primarily
specifies the interfaces between system components rather than the components
themselves. And while this approach promises re-usable software components, it does not
address the challenge of re-using designs mapped to future radio hardware components.
Our focus is on retargeting a common radio design to multiple implementation platforms.

We completed a feasibility study for a Framework for ReTargeting Radio Designs to
facilitate the design, re-use, and re-targeting of radio designs to multiple hardware
platforms. By “radio design” we mean the specification and implementation of the
system(s) that actually process bits and signals that implement the physical radio. By
“framework” we mean a set of tools to specify, optimize, and instantiate a radio design in
a number of technologies (e.g., general purpose processors, digital signal processors, field
programmable gate arrays, or application specific integrated circuits). And by
“retargeting” we mean the re-use of radio designs on multiple hardware implementations.

Such a design framework is vital within the context of ongoing DARPA and DoD
programs because these programs focus on quick development of low-cost radios as
technology advances, as mission demands increase, and as system cost becomes a major
concern. A major focus of current DARPA radio programs is to reduce the cost of
flexible radios. This feasibility study supports that focus by addressing the challenge of
reducing the non-recurring engineering costs of designing radios.

Our approach to the Radio Design Framework, called ReTarget, is threefold. First, the
framework uses a standards based specification language to describe radio components.
Second, we implemented an intermediate description language, called dlang, that is
suitable for automated processing. The intermediate language supports well defined
transforms and validation checks based on user criteria, technology capabilities, and
constraints. Third, we implemented transforms from dlang into the commercially
available languages VHSIC Hardware Description Language (VHDL) and C. (VHSIC
stands for Very High Speed Integrated Circuits, a Department of Defense program in the
early 1980’s.) Commercial tools can be used to carry out the final design implementation.

Our initial study focuses on designing the architecture for ReTarget and demonstrating
the feasibility of the architecture. A significant effort was invested in the intermediate
description language. The language needed to be able to capture radio functions, needed
to be sufficiently flexible to represent software and hardware system, and be capable of
supporting trade-offs between different alternative implementations. We implemented a
few example radio functions, implemented one means to transfer information between
radio functions, and generated VHDL and C implementations.

 2

Our experience with this feasibility study of ReTarget affirms our convection that tools
for automated design of radios from specifications is possible, but that significant
attention in the future needs to be paid to how radio functions exchange information, how
one controls radio functions, and how one transforms a specification to meet
implementation goals.

This work was supported by The Defense Advanced Research Projects Agency
(DARPA) and The Air Force Research Laboratory (AFRL) under contract FA8650-07-C-
7733.

 3

2 Introduction

ReTarget is an application-oriented specification language, compiler, and simulator. The
language expresses dataflow applications at high abstraction levels. This class of
application includes those for radio communication processing and digital signal
processing. The functional nature of the language is important for two reasons. First,
users easily express radio designs at an abstract level with dataflow paradigms. Second,
functional languages are amenable to symbolic and automatic manipulation to (a) convert
from high abstraction levels to implementation levels, (b) optimize conversions based on
different criteria and target architectures, and (c) elicit through formal methods properties
concerning an application and their implementation. A key characteristic of ReTarget is
the inclusion of formal specifications of program properties, the capability to use those
formal specifications during the compilation process to meet user established criteria, and
the ability to make specific statements about the properties of programs and
implementations.

Radio designs are specified in a high-level, formal specification language. The language
is amenable to automated transforms that can take into account user criteria (e.g., low
power, high speed, or small size) and implementation constraints (e.g., implementation in
a specific field programmable gate array). The transform mechanism will be based on
provided and user defined rule sets. That is, users will be able to control and manage the
process by defining transformation rules.

In order to take these concepts to practice, future example radio designs will need to be
specified with the user interface, transformed using the transformation mechanism and
design rules and implemented on selected radio platforms subject to DARPA program
needs. In addition to technology research and development, this preliminary effort will
create a roadmap for implementation of the framework, including identification of
development challenges and metrics.

 4

3 Feasibility Study Implementation

In our feasibility study, we focused on three activities for our framework:
1. specify typical radio functions,
2. express radio functions and intra-communications in an intermediate language,

and
3. translate the intermediate language into executable code.

Figure 1 illustrates the ReTarget concept. Specifications are written in Rosetta. Once
written, we expect specifications to be re-used multiple times. Specifications are
translated to an intermediate language. For this feasibility study, we developed a
functional intermediate language called dlang. Intermediate forms expressed in dlang can
also be re-used. The dlang intermediate forms are then translated to implementation
languages. In this study we generated C and behavioral VHDL. We developed dlang as a
functional language because we anticipate that future work will entail applying
transforms to dlang forms to achieve specific implementation goals and functional
languages facilitate applying transforms.

ASIC FPGA DSP GPU

Radio #2
ASIC FPGA DSP GPU

Radio #1

Rosetta Specifications

Intermediate
Forms

Rosetta Specifications

Re-Use Specifications

Re-Use Intermediate Forms

ReTarget
Implementations

T a r g e t
Implementations

Intermediate
Forms

Figure 1 The ReTarget Concept

 5

3.1 Rosetta Specification Language

We selected the Rosetta [3] specification language for ReTarget. Rosetta is an emerging
IEEE standard (IEEE Standard P1699) and the principal author is a co-investigator on
this project.

Rosetta is a systems-level design language. Thus it is structured in a way that different
experts can describe the behavior of their aspect of a system and then compose those
multiple aspects into a system-level design. For example, one expert would design the
logic or algorithm of a circuit. A second expert would describe the power of the logic
function. A third expert would describe the physical size of the logic function. Rosetta
enables these independent descriptions and the combination of these descriptions into a
system level design.

Rosetta is a specification language. Thus, when we write (taken from a part of the
Advanced Encryption Standard (AES) specification):

// Define utility function subBytesRow usign explicit sequence creation
 subBytesRow(a::rowType)::rowType is
 [sbox(bv2nat(a(0))),
 sbox(bv2nat(a(1))),
 sbox(bv2nat(a(2))),
 sbox(bv2nat(a(3)))];

we are not describing how you compute subBytesRow but are describing what
subBytesRow is equivalent to. Rosetta describes the relationships and equivalences
between statements about the design. Because Rosetta explicitly states relationships and
equivalences, automated means, tools, and techniques can be used to check the
consistency of a collection of Rosetta statements.

Rosetta specifications are translated into an abstract syntax tree (AST) using existing
tools [9][10]. The AST is translated into a functional language designed to express radio
functions and the exchange of information between radio functions. We call this
intermediate functional language dlang.

3.2 The Intermediate Language dlang

We developed an intermediate language, called dlang, for describing radio functions.
dlang is a functional language with extensions for computational effects (such as state
and concurrency). In the functional subset of the language, all expressions are pure: that
is, they simply describe how to transform inputs (arguments) to outputs. The state and
concurrency extensions are structured using monads, which encapsulate computational
effects. Using monads simplifies the reasoning and transformation of those computations
in the compilation toolset.

An example we commonly use is the following:
1. You have the expression “(* X 5)” meaning you multiply X by 5.

 6

2. You reduce the expression to “(ConstMultiply X 5)” meaning you recognize the
constant “5” and use a more efficient constant coefficient multiplier.

3. You reduce the expression to “(Add X (ShiftLeft X 2))” meaning you recognize
that multiplication by “5” can be accomplished by a shift of X and an addition.

A significant complication in the specification and expression languages (i.e. Rosetta and
dlang) is how radio functions communicate. We address this issue below. dlang is
described in detail in Section 4.1.

3.3 Implementation Languages

We focused on translating simple dlang expressions to the languages behavioral VHDL
and C. These languages were chosen because they represent paths to field programmable
gate arrays (FPGAs), application specific integrated circuits (ASICs), digital signal
processors (DSPs), and general purpose processors (GPPs). Within ReTarget you can use
the same specification and dlang description of a radio function and generate either
VHDL or C language expressions depending on your targeted implementation.

3.4 Examples

In this section we present samples of radio function descriptions in Rosetta and dlang.
Out intent is to provide a “flavor” of these languages and not a complete description or
example. We present a complete example in Appendix B. These languages are designed
to support well-defined expressions and automated analysis and transformations.
Expressions in Rosetta and dlang are “different” from most programming languages. In
Rosetta, we state equivalences, not assignment. In dlang, we state how radio functions
interconnect. Each language is selected for precision in description and automated
processing. In our framework, engineers would describe radio functions in Rosetta and
not need to look at dlang or resulting programs.

3.4.1 Examples of Rosetta

A key radio function is modulation of a carrier signal. In a mathematical sense we use the
expression:

S(t) = A(t) ! Cos(" (t)t + #(t)) .

In this case A(t) represents the amplitude of the signal as it varies over time, ω(t)
represents the change in frequency over time and ! (t) represents the change in phase
over time. Our primary modulation techniques are derived from this expression. For
Amplitude Modulation (AM), we hold ω(t) and ! (t) constant and change A(t). For
Frequency Modulation (FM) we hold A(t) and ! (t) constant and change ω(t). For phase
modulation we hold A(t) and ω(t) constant and change ! (t).

In Rosetta we describe the general modulation function as:

 7

// Constant values

 twoPi :: real is 2*pi;

 modulate(am, fm, ps :: real; f, t :: real) :: real is
 am*cos(twoPi*(f+fm)*t+ps);

This Rosetta expression states that “twoPi” is a real value and equivalent to 2*π. It also
states the relationship between the term “modulate” and its description: amplitude (“am”)
modulated cosine with frequency “f,” frequency offset “fm,” time “t,” and phase offset
“ps.”

Now, when we want to define an AM modulator, we use the expression:

amMod[T::type](k::<*(x::T)::real*>; f::real; t::real; s::T)::real is
 modulate(k(s),0.0,0.0,f,t);

In essence, this states that AM modulator “amMod” is a “modulate” item with function
“k(s)” as the amplitude, no frequency offset, and no phase offset. Function “k(s)” takes a
symbol of type T and maps it to a real. When using “amMod” the type T is inferred from
its usage environment. T is thus a placeholder in the definition of “amMod” and
“amMod” can be used to generate continuous wave (CW), amplitude shift keying (ASK),
and amplitude modulated (AM) signals by providing different instantiations of “k(s).”

Further examples are provided in Appendices B and C.

3.4.2 Examples of dlang

dlang is a functional language. In general, that means there is no memory (variables) and
no side-effects in the language. This facilitates automated tools manipulating or
transforming language statements.

The following is a partial listing of a handcoded Huffman [8] encoder in dlang.

 8

(data HuffmanTree (Emit char)
 (Node HuffmanTree HuffmanTree))
;

;; Decoder traverses the HuffmanTree based on the input bitstream,
;; until it encounters an Emit node, corresponding to a
;; received symbol.
;; Accepts input as a bit stream
;; Outputs decoded symbol (bits 8)

(define (decode (fulltree (HuffmanTree a)) (tree (HuffmanTree a))
 (monad [(@inChan (react (Msg b)))
 (@outChan (react (Msg a)))] Unit))
 (case tree
 ((Emit a) (do (signal @outChan (ReqSend (Just a)))
 (decode fulltree fulltree [@inChan @outChan])))
 ((Node l r) (do (val <- (recvMsg [@inChan]))
 (case val
 ((Just v) (case v
 ((True) (decode fulltree r
 [@inChan @outChan]))
 ((False) (decode fulltree l
 [@inChan @outChan]))))
 ((Nothing) (do (signal @outChan
 (ReqSend Nothing))
 (return Unit))))))))

The “data” statement defines a “HuffmanTree” as either an “Emit” node with value type
“char” or a “Node” with left and right branches of types “HuffmanTree.” This is a
conventional binary tree. The idea is that as bits arrive for decoding the program walks
down the tree, going left for 0 and right for 1, until encountering an “Emit” node. When
the “Emit” node is encountered, the value attached to the “Emit” node is returned.

The description of the Huffman decoder in a functional language, like dlang, is a bit more
complex. Because functional languages generally do not support state or variables, items
like tables and trees must be passed from one invocation to the next. In the case of the
Huffman decoder, a full “HuffmanTree” and a partial “HuffmanTree” must be passed to
each invocation of the “decode” function. Also passed in the invocation of “decode” are
input and output channels described in the “monad” statement. Input and output channels
will be discussed below.

When invoked, “decode” looks at the partial tree passed as the argument “tree.” If “tree”
is a node of type “Emit,” the value of the “Emit” node, “a,” is output with the “signal”
statement and the decoder is invoked again to receive the next encoded symbol. If “tree”
is of type “Node” with a left and right branch, then we attempt to read a value from the
input channel. There are two possibilities, a value is available, denoted “(Just v)” or
nothing is available, i.e. the upstream process has not yet produced a value, denoted
“(Nothing).” When a value is received, it is used to determine which branch of the
“Node” to use for further decoding. If the value is “True” the right, or “r” tree is used. If
the value is “False” the left, or “l” tree is used. Decoding continues until an “Emit” node
is encountered and decoding of the next encoded symbol begins. When “(Nothing)” is

 9

received on the input, “Nothing” is sent on the output. Inter-function communication will
be discussed below.

While dlang is somewhat readable, it is an intermediate form for automated processing.
We do not expect engineers to write dlang programs and to rarely expect them to look at
dlang programs. dlang outputs from the Rosetta processor are like a compiler
intermediate form and are consumed directly by downstream processing tools.

3.4.3 Example of Generated Code

The following C function was generated from the Huffman decode description. As
automatically generated code, it is not necessarily “pretty.”

 10

Unit decode (HuffmanTree fulltree,HuffmanTree tree,Msg inChan,Msg outChan)
 {HuffmanTree var0 = tree ;
 switch ((int)((var0) [0]))
 {case 0 :
 {PTR a = (PTR)((var0) [1]) ;
 {Maybe var1 = (Maybe)(malloc (8)) ;
 ((var1) [0]) = ((PTR)(1));
 ((var1) [1]) = ((PTR)(a));
 Msg var2 = (Msg)(malloc (8)) ;
 ((var2) [0]) = ((PTR)(1));
 ((var2) [1]) = ((PTR)(var1));
 dlangSignal ((Msg)(outChan),(Msg)(var2));
 return (decode
 ((HuffmanTree)(fulltree),
 (HuffmanTree)(fulltree),
 (Msg)(inChan),
 (Msg)(outChan)));}}
 case 1 :
 {HuffmanTree l = (HuffmanTree)((var0) [1]) ;
 HuffmanTree r = (HuffmanTree)((var0) [2]) ;
 {Maybe val = recvMsg ((Msg)(inChan)) ;
 Maybe var3 = val ;
 switch ((int)((var3) [0]))
 {case 1 :
 {PTR v = (PTR)((var3) [1]) ;
 {Bool var4 = v ;
 switch ((int)((var4) [0]))
 {case 1 :
 {return (decode
 ((HuffmanTree)(fulltree),
 (HuffmanTree)(r),
 (Msg)(inChan),
 (Msg)(outChan)));}
 case 0 :
 {return (decode
 ((HuffmanTree)(fulltree),
 (HuffmanTree)(l),
 (Msg)(inChan),
 (Msg)(outChan)));}}}}
 case 0 :
 {{Msg var5 = (Msg)(malloc (8)) ;
 ((var5) [0]) = ((PTR)(1));
 ((var5) [1]) = ((PTR)(&tag_Nothing));
 dlangSignal ((Msg)(outChan),(Msg)(var5));
 return (&tag_Unit);}}}}}}}

 11

4 ReTarget System Architecture

ReTarget is implemented as a set of programs written in Haskell [6]. Haskell is a non-
strict functional language with a strong type system used to implement Rosetta tools. The
existing Rosetta toolset, consisting of Raskell and InterpreterLib, translates Rosetta to an
Abstract Syntax Tree (AST). We implemented a new program to translate the AST to
dlang. The ReTarget program flow is shown in Figure 2.

We have implemented a Rosetta plug-in for the Eclipse [7] development environment.
The Eclipse Rosetta plug-in supports keyword highlighting, a syntax checker, and a
standard interface to Rosetta tools. Additional program flow steps, now executed
manually, can be included in the plug-in in the future.

Figure 2 The Program Flow from a Rosetta Specifications to Final C or

VHDL Program

Rosetta [3], C [4], and VHDL [5] are defined elsewhere. In the next section we will
describe dlang and provide a rationale for designing and implementing a new
intermediate language.

4.1 The dlang Intermediate Language

There are three major elements of dlang:
1. Pure functional language
2. Monadic Imperative state
3. Monadic Reactive Concurrency

 12

The “pure functional language” is important because we can do unfold and fold
transforms that allow us to take advantage of the inherent parallelism (modulo data
dependencies) of functional languages. The example Hamming encoder is an example of
this - we define a specification that is a set of list comprehensions. The specification is
independent of the actual size of the data input, yet when we go to synthesize the circuit,
we can unfold the definitions of the comprehensions to get multiple instantiations of a
component (a parity checker, in the case of the Hamming encoder), which can be
executed in parallel.

Being able to perform program manipulations is critical if we are to target both hardware
and software from a single descriptive source. The difference between hardware and
software design is in mechanisms for the designer to precisely control the number of
computational resources that are available. In software, you have no choice but to use the
resources offered by the CPU, so consequently you end up time-multiplexing data
parallelism across those limited resources, generally using some sort of loop. On the
other hand, in hardware you can dictate exactly how many instances of a given
computational resource you wish to use, and incorporate that number into your circuit.

The (sequential) software model and the (parallel) hardware model are really two
different views on the same computation, it is just that the view of the computation in
software is from the time perspective, while the hardware view is from the space, or
structural, perspective. Because dlang is a pure functional language, these two views are
compatible, as there are no implicit computational effects in a pure functional program.
This means that a wide variety of transformations are possible, and safe, because
computational effects can be ignored. It is possible to take a pure dlang program and
inline it into its primitive components, resulting in a large combinational circuit. This is
unwise from a design perspective because there is no accounting for space or time
limitations in the target model. Consequently, dlang includes two constructs for
controlling the time and space behavior exhibited by a pure program.

First, a dlang program consists of a set of top-level function definitions, along with a
distinguished main expression that calls the defined functions. A top-level function
delimits a shared resource. The body of the function will be implemented as a single
circuit, regardless of the number of calls to the function. If there are, in fact, multiple
calls to the function, the function block contains arbitration logic that will process those
calls in some (undetermined) sequential order. This is a space/time tradeoff. Because the
pure subset of dlang does not have side effects, a designer can take a single shared
function block, duplicate it, and distribute the calls to the original function amongst the
various duplicated blocks.

Second, dlang includes a “let” construct that introduces sequence and sharing into a
program. Suppose that a particular dlang expression will result in a very long critical
path. Inserting a pipeline register into the circuit, and thus reducing that critical path, is as
simple as selecting a sub-expression and adding a named binding via a let expression.
Likewise, a common sub-expression can be factored into a single let binding. Rather than
a circuit for each instance of the sub-expression, the synthesis scheme will generate a
single circuit that can be shared among all references to that sub-expression.

 13

The ability to perform these transformations gives a justification to the pure functional
subset of dlang. However, the pure functional subset of the language is simply too
restrictive to be practical for building radios, or embedded applications in general. This is
because the pure functional model is heavily skewed towards dataflow computation,
which is a poor abstraction when constructing control-intensive or reactive systems, both
of which are common traits of embedded systems. Control implies a notion of state. This,
along with the interaction with external entities implied by reactive components, forces
dlang to include a mechanism for performing both stateful and reactive effects. However,
we wish to add constructs for building these sorts of computations without breaking the
purity that we rely on to justify transformations that allow us to target both hardware and
software. Therefore, we use monads to structure effective computations.

By structuring computational effects using monads, we get a static delineation between
pure operations and effective computations that is expressed at the type-level. A monadic
computation can include pure computations, but the converse is not true. This means that
the extent that transformations are valid are clearly delimited by the monadic
encapsulation of effects. The synthesis toolset is free to transform programs within a
monadic computation, but the transformations may never escape those monad
boundaries.

What this means for radio components is that there is a fairly regular structure. A
component is a loop that receives data from some extra entity via the reactive
concurrency construct, performs some processing on that data, sends the data onto
another component via the reactive concurrency construct, and repeats. The component
may perform several loop iterations between receives/sends. The Hamming encoder is an
example of this. Also, the component may carry some state across iterations. The primary
purpose of this state is to simplify the specification of control logic.

The dlang monadic constructs are segmented into two categories: two for performing
imperative effects, and one for reactive concurrency. The imperative, or state, constructs
include a “get” function for accessing state, and a “put” function for mutating the state.
Both of these functions use addressable state. The semantics of the state monadic
constructs are as one would expect.

The reactive concurrency construct is called “signal.” The signal construct takes a
message (or request) and routes that message to an external entity. From the point of view
of a component, the outside world is accessible only via the signal construct, and can
only be affected by signaling a request. Once a computation signals a request, the
computation will block until a response is returned from an external entity. Again,
signaling a request and then interpreting the response is the only way to observe the
outside world from a reactive computation. That is the totality of the dlang concurrency
semantics within the language. Obviously, the semantics leaves much undefined -- such
as what is the content of the request/response messages, how are they interpreted, and
how are they routed between components.

We elected not to extend dlang with special semantics for different types of reactive
communication, simply because the possible range of different inter-component
communication is boundless. As examples, the inspiration for this work used the reactive
monad construct to model an operating systems kernel, while in contrast we have defined

 14

a series of point-to-point communication behaviors that include a mailbox, bounded
FIFO, and unbounded FIFO. The basic concurrency constructs allow us to model each of
these, but the specific behavior for each communication is defined within dlang as a
collection of functions, rather than as special language constructs. These functions are
arranged according to a regular pattern; we have developed a nomenclature to refer to the
various elements.

First, a thread is a processing component. A thread may consist of a combination of pure
functional, imperative, and reactive expression. The single point of interaction with
outside entities for a thread is via the reactive constructs. However, a thread may interact
with several different external entities, with each interaction accomplished with a
different protocol. A named interaction point for a thread is called a port. Finally, the
ports are connected to a service, which is a collection of dlang functions that implements
the protocol the connected threads use.

For example, consider a component that performs stream processing: consuming data
from an input source, manipulating the data, than sending the data on to an output sink.
Figure 3 has two examples of this architecture. The boxes labeled “source,” “transform,”
and “sink” are dlang threads. Each thread has ports, indicated by the grayed semicircles
where arrows enter and exit the thread. The rectangles labeled “F” in the top figure and
“Bus” in the bottom are services. In the top figure, the “transform” figure has two ports,
each of which is connected to a separate service. In the bottom figure, the “transform”
component has a single port, connected to the “bus” service.

source transform sinkF F

1

2

3

4

5

6

7

8

source transform sink

Bus

1

2

3

4

5

6

7

8

Figure 3 Two Mechanisms for Inter-Function Communications

The transmission of messages (requests/responses) between threads and services is
indicated in Figure 3 by the dotted arrows. The arrows are numbered to indicate the

 15

ordering of messages. For example, in the top figure, the “source” would (1) issue a Send
request to the “F” service that would include the data it wishes to send to the “transform”
thread. The thread would block until the service (2) responded with an Ack response. The
“transform” component (3) issues a Receive request to the service “F,” and then block
until “F” (4) sends a response that includes the data originally transmitted by “source”.
The series of messages (5,6,7,8) uses the same protocol with “transform” acting the
sender and “sink” the receiver.

It is critical to note that the ordering of messages is for expository purposes only. Because
the threads “source,” “transform,” and “sink” are operating concurrently, each may issue
a request at any time, subject the protocol restriction. Temporally, there will be an
ordering between request/response pairs: (1 comes before 2), (3 before 4), and so on. In
the dlang concurrency architecture, a request/response pair is called a service transaction.
The logic of a thread will also dictate the ordering of service transactions -- for example,
the transaction (3,4) necessarily comes before (5,6), since it is necessary for the
“transform” service to receive data to process before processing it and sending it on to the
“sink” thread.

The lower figure has all three threads connected via a single “Bus” service.
Consequently, the “transform” thread has a single port for communicating with the Bus
service, in contrast to the two ports in the point-to-point model with FIFO services.
Moreover, the reorganization of the system architecture requires each thread to add
additional information to the requests that issued to the Bus service indicating the
intended destination for the message. In contrast, the architecture in the top diagram
allows communication addressing to be implied by the port.

The “F” and “Bus” services in the diagrams implement a given protocol. This is
accomplished with a pair of dlang functions: a handler function that takes a request issued
by a thread and generates the appropriate response, and a scheduler function that
determines when a response generated by the handler can be returned to the appropriate
blocked thread. These functions include imperative effects that allow the service to
implement the control portion of its protocol. This can be illustrated using the top
example architecture from above. The service that handles communication between the
“source” and “transform” thread will initially be in a state waiting for a request from
either thread. Upon receiving a request, the service invokes the handler function on the
request. If the request is from “source” and is a Send request, the service will store the
value included in the request and generate an Ack response. The scheduler function will
then be invoked, which will return that Ack response to the source thread. Alternatively,
if the request is a Receive request from the “transform” thread, the handler will note that
a receive is pending, but cannot generate a response immediately, because there is no
previous send request from the source thread. In this case, the scheduler function will
indicate that there are no pending responses to transmit to threads, and the scheduler will
wait for the next request, which can only come from the “source” thread, as the
“transform” thread will remain blocked until the service returns a response to its receive
request.

Hence, the service implements a very simple mailbox protocol: a receive request will
cause the issuing thread to block until there has been a matching send requests.
Moreover, if a thread issues two consecutive send requests, and the service does not

 16

receive an intervening receive request, the sending thread will block on the second send
until a Receive is issued. This is a degenerate case of a bounded FIFO, which would
allow an arbitrary (but fixed for a particular instance) number of sends without an
intervening receive, simply by using a larger imperative state for buffering sent data. The
bounded FIFO is, in turn, a specialization of an unbounded FIFO. However, the
unbounded FIFO requires that the service be able to dynamically allocate storage, which
is typically not possible in a direct hardware implementation. This suggests a dlang
design process: a system is modeled as a collection of thread communicating with each
other via a given protocol. The system developer then generates a service definition that
provides the loosest bounds on implementation, such as the unbounded FIFO
implementation of point-to- point communication, and uses that model for simulation and
early design testing. As threads are mapped to various implementation targets,
technology specific knowledge is used to drive the transformations of dlang thread
definitions to get implementations that can match the capabilities of the target platform.

4.2 Comparison of dlang to other Hardware Description Languages

In this section we compare dlang to other languages engineers have used to describe
hardware and software systems.

4.2.1 VHDL and Verilog

VHDL [5] and Verilog [11] are the primary of hardware description languages used by
engineers. Both of them exploit parallelism inherent in hardware. However, there is an
enormous burden on the engineer to deal with low-level details of communication
between concurrent components. Inter-component communication is managed by
incorporating protocol details into the component that is being designed. Contrast this
with dlang, where all external communication is transaction-based. The thread has to be
aware of the protocol up to the point of knowing the correct sequence of requests and
responses, but the implementation of the protocol - at the level of clocked signals - is
irrelevant from the point of view of the thread. Similarly, because the handler and
scheduler functions for a service are written in dlang, these implementation themselves
can ignore low-level details. All of the precise details of thread to service communication
and service to thread communication are handled by the synthesis routines. Moreover,
this synthesis model is such that it can be both for handling shared function blocks for the
pure subset of the language as well as thread to/from service communication. Moreover,
the type system of dlang is more sophisticated than VHDL, and much more than that of
Verilog. Using algebraic data types, dlang can model data at a high level, and the
compilation and synthesis routines can compile the high-level data representations to
efficient implementations.

4.2.2 Lava, Hawk, and Ruby

Lava [12], Hawk [13], and Ruby [14] follow in a tradition of modeling circuits as
functional programs. We will focus on Lava, since we are most familiar with it, however,
the analysis is relevant to all three. Lava is a language that is embedded in Haskell, which
uses Haskell's lazy lists to model synchronous circuits as streams of bits. Circuits are
built structurally, and can be simulated (directly within Haskell), synthesized (to
structural VHDL), or verified (using an external Satisfiable-based solver). Compared to

 17

dlang, the circuit representations are much lower-level, both in data representation (all
data has to be represented as bits) and computationally (state can only be introduced
using a delay element, which models a flip-flop). Moreover, there is no language-level
model of concurrency, such as dlang's signal construct.

4.2.3 SAFL

dlang is most closely related to, and derivative of the Statically Allocated Functional
Language (SAFL) [15]. Many of the ideas, both in the language design and in the
synthesis implementation, reflect these origins. The most important departure is the
formal basis of monads to model computation in dlang. To a great degree, dlang simply
provides a convenient toolset for constructing and manipulating formal monadic models
of systems. We chose to develop our own toolset, rather than reuse SAFL, for pragmatic
reasons: it is unclear as to the availability of the SAFL toolset and the intellectual
property restrictions on its use.

 18

5 Inter-Function Communications

Typically, when we describe software-defined radios (SDR), we focus on the processing
functions and not so much on how information is passed between functions. Figure 4 is a
typical SDR block diagram. We are interested in the behavior and performance of these
processing functions. However, the manner in which processing functions are connected
is crucial to the performance and capabilities of a SDR.

Figure 4 A Typical Software-Defined Radio Processing Flow

The JTRS program selected the Common Object Request Broker Architecture (CORBA)
as the means to interconnect radio functions. While flexible, CORBA uses significant
processor capacity that leads to increased component costs and energy use. CORBA is a
software middleware system. Adapting CORBA to hardware, such as FPGAs, ASICs, or
DSPs has been difficult. Another approach is to use shared memory to store intermediate
values and pass pointers to data structures in shared memory among the components of a
SDR. This works well for software radio functions implemented in DSPs or GPPs and
can work for radio functions implemented in FPGAs or ASICs.

A key result of our work is the recognition that the means to move information around a
SDR is almost as important as the radio functions needed to implement a SDR. Inter-
function communications must be as rigorously specified as radio functions. Figure 5
attempts to capture this concept. Moving data between functions is fundamental to
implementing SDRs and engineers invest a significant design effort to ensure data
transfer is flawless.

 19

Inter-Function Communications

Encrypt ErrorCtrl ModulateSpread

Figure 5 The Inter-Function Communications between Radio Functions

In our framework, we explicitly specify the inter-function communication mechanism.
For this feasibility study, we use a simple mechanism. Data passed between functions are
represented by a pair: < Status, Value >. Value is a bit vector holding the information.
Status indicates if the Value is valid or not. The states of Status are: Invalid, Valid, and
EndOfBlock. This abstraction works for software and hardware defined radio functions.

For example, in hardware we commonly use a central clock to coordinate activity in
multiple radio functions. We can think that on each clock pulse, a radio function outputs
< Status, Value > pair. The receiving function takes action based on Status. If Status is
Valid, the Value is processed. If Status is Invalid, the Value is not processed. If Status is
EndOfBlock, special processing might take place.

The same abstraction can be used in software implementations of radio functions. Each
radio function is an execution thread in the software implementation. Threads are
executed when data is Valid. For this study, we implemented a message-passing
algorithm.

We arrived at this abstraction after considering a range of radio function blocks and
experience in designing, implementing, and reviewing SDRs. We know, from experience,
that a compression function will have more symbols, e.g., < Status, Value > pairs coming
in than are output. We know that an error control function will generate more output bits
than input bits. We know that a spreading function will output more chips than input bits.
Because radio functions have different input/output rates, we use the abstraction
described above to define how radio functions communicate and use a common clock to
keep functions synchronized.

Our framework allows multiple definitions of the inter-function communication process.
That is, the definition of how data is transferred between radio functions is defined in the
Rosetta and dlang system. Other inter-function communication processes can be
designed. Our intent is to separate the design of processing functions from the design of
inter-function communications.

 20

6 Results

In this feasibility study we implemented a framework for retargeting radio designs. We
accomplished the following:

1. Wrote radio function specifications in a standard, systems level specifications
language, Rosetta.

2. Translated Rosetta specifications to an intermediate language, dlang, using
existing and new tools.

3. Translated dlang intermediate forms to C and VHDL using new tools.
4. Implemented an inter-function communications capability based on message

passing defined in dlang and suitable for implementation in both hardware and
software.

6.1 Lessons Learned
1. Writing a coherent set of specifications is more difficult than anticipated. Most

radio functions are described as algorithms. Moving descriptions from algorithms
and mathematical equations to specifications was harder than anticipated. There
are multiple ways of writing radio function specifications and determining the
best way, if there is one, requires further work.

2. Inter-function communications is critical and needs to be explicitly specified.
SDR design systems must include mechanisms to implement different inter-
function communications systems.

6.2 Conclusions

We demonstrated a prototype capability for writing radio functions in a specification
language and translating specifications to an implementation language through an
intermediate functional language. We recognized the needs to (a) consider specifying
how information is exchanged between radio-functions and (b) refine the radio design
domain for systems level design frameworks.

 21

7 Future

This project has only started to explore the issues of automated radio design. During our
research we identified the following as important topics to research in the future.

1. Rosetta is a powerful specification language aimed at addressing a wide range of
system level design problems. The full range of Rosetta capabilities needs to be
refined through defining a Radio Domain to make expressing radio functions
easier for the radio designer. That is, we need to develop a Radio Specification
Language within the Rosetta system. Rosetta explicitly supports writing such
domains, thus a framework is already in place.

2. Further work on abstracting, defining, and implementing inter-function
communications is needed. In particular we need to find abstractions that work for
both hardware and software implementations and enable the goal of quickly
retargeting designs to different implementations. In our feasibility study, we
defined inter-function communication in dlang. We need to move those
definitions to Rosetta.

3. This project did not work with the control and management of radio functions.
We only worked with the processing functions. Many functions, like the Huffman
compressor/decompressor, AES encryption/decryption, and direct sequence
spreaders need to be initialized before execution. Future work needs to address
how control and management functions are defined and integrated with the radio
functions.

4. dlang is designed to make it easy to transform one statement into another. We did
not implement any transforms or work on a transform system. A transform system
and appropriate transform rules for multiple implementation targets needs to be
designed, implemented, and tested.

 22

8 References

[1] D. Bauman, "Joint Tactical Radio System, Introductory Remarks for Media
Teleconference," Joint Tactical Radio System Joint Program Executive Office, May
3, 2006.

[2] "Software Communications Architecture Specification, MSRC-5000SCA, V2.2,"
Joint Tactical Radio System Joint Program Office, November 17, 2001.

[3] W. P. Alexander, System-Level Design with Rosetta, Morgan Kaufmann Publishers,
Inc, 2006, ISBN: 9781558607712.

[4] B. W. Kernighan, and D. M. Ritchie, C Programming Language, 2nd ed., Prentice
Hall PTR, 1988.

[5] P. J. Ashenden, The Designer's Guide to VHDL. 3rd ed., Morgan Kaufmann, 2008.

[6] P. Hudak, The Haskell School of Expression: Learning Functional Programming
through Multimedia, Cambridge University Press, 2000.

[7] S. Holzner, Eclipse, O'Reilly Media, Inc., 2004.

[8] D. A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., pp 1098-1102, September 1952.

[9] P. Weaver, G. Kimmell, and W. P. Alexander, “Software Engineering with Algebra
Combinators,” in Proceedings of the ACM International Conference on Generative
Programming and Component Engineering (GPCE'07), October 1-3, 2007.

[10] E. Komp, G. Kimmell, J. Ward, and W. P. Alexander, “The Raskell Evaluation
Environment, Technical Report,” The University of Kansas Information and
Telecommunications Technology Center, 2335 Irving Hill Rd, Lawrence, KS, USA,
November 2003.

[11] “Standard Verilog Hardware Description Language Reference Manual, ”Institute of
Electrical and Electronic Engineers, New York, NY, 2007.

[12] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: Hardware design in
Haskell,” in Proceeding of The International Conference on Functional Programming,
Baltimore, Maryland, September 26-29, 1998, pp. 174-184.

[13] J. Matthews, B. Cook, and J. Launchbury, “Microprocessor specification in Hawk,”
in Proceedings of the 1998 International Conference on Computer Languages,
Chicago, IL, May 14-16, 1998, pp. 90-101.

[14] G. Jones and M. Sheeran. “Designing Arithmetic Circuits by Refinement in Ruby,”
Proceedings of the Second international Conference on Mathematics of Program
Construction (June 29 - July 03, 1992). R. S. Bird, C. Morgan, and J. Woodcock, Eds.
Lecture Notes In Computer Science, vol. 669. Springer-Verlag, London, 208-232..

[15] R. Sharp, Higher-Level Hardware Synthesis, SpringerVerlag, 2004

 23

Appendix A – External Presentations
We made the presentations concerning Radio Design to the following groups during the
project:

DARPA Kick-off meeting, October 2-3, 2007, Arlington, VA.
DARPA WNaN Project Review at MA/COM, December 5, 2007, Lowell, MA.
IDGA 6th Annual Software Radio Summit, February 26, 2008, Vienna, VA.
Rockwell-Collins, February 13, 2008, Cedar Rapids, IA.
DoD/Finnish Workshop, March 10-11, 2008, Washington D.C.
Rockwell-Collins, April 30, 2008, Cedar Rapids, IA.
Microsoft Research, June 2008.
JTRS Science & Technology Forum (JSTeF), September 17-18, 2008, San Diego,

CA.
Formal Design Languages Conference, October 2008, Stugart, Germany.

Professor Evans is participating in a STTR project sponsored by the JTRS office.

Professor Minden is a member of a National Research Council (NRC) panel on
“Universal Radio Frequency Systems for Special Operations Forces.”

 24

Appendix B – Example of Huffman Encoder
This appendix presents a complete example of using Rosetta and dlang to generate
executable code. We use the Huffman [8] compression/de-compression function as an
example. The reasons for using the Huffman compressor are that it is a possible radio
function and it has different input and output data rates.

 25

B.1 Rosetta Specification for Huffman Compressor

package huffman() :: state_based is

 // Cleanup: Record Fields should be lowercase
 // Cleanup: Types should be uppercase
 HuffmanTree :: type is data
 Emit(HuffmanTreeVal :: char)::isEmit |
 Node(Left :: HuffmanTree; Right :: HuffmanTree)::isNode
 end data;

 Pair(a :: type; b :: type) :: type is data
 Pair (first :: a; second :: b) :: isPair
 end data;

 // Table(a :: type; b :: type) :: type is sequence (Pair(a,b));

 treeToTable (bs :: sequence(bit); tree :: HuffmanTree) ::
 Table(char, sequence(bit)) is
 if (isEmit (tree)) then
 [Pair(HuffmanTreeVal(tree), bs)]
 else
 treeToTable((bs + [0]), Left(tree)) +
 treeToTable((bs + [1]), Right(tree))
 end if;

 lookup [a :: type; b :: type] (key :: a; table :: Table(a,b)) ::
b is
 if (first(head(table)) == key) then
 second(head(table))
 else
 lookup(key, tail(table))
 end if;

 facet huffmanDecoder (inChan :: channel bit ;
 fulltree :: design HuffmanTree ;
 outChan :: channel char) :: state_based is

 StateName :: type is [waitInput, decoding, checkOutput, done];

 currentState :: StateName;
 tree :: HuffmanTree;

 begin

// init_label:
// tree' = fulltree and
// currentState' = waitInput;

 input_label: (currentState = waitInput) =>
 inChan'Receive and currentState' = decoding;

 // We have input and we're now deciding what to do with it.
 decoding: (currentState = decoding) =>
 (tree' = if (inChan == 1) then Right(tree)
 else Left(tree) end if)
 and currentState' = checkOutput ;

 26

 // If we're ready to output, then do so. Otherwise just wait.
 output_label: (currentState = checkOutput) =>
 currentState' = waitInput;

 output_emit: (currentState = checkOutput) and isEmit(tree) =>
 (outChan'Send(HuffmanTreeVal(tree)))
 and tree' = fulltree
 and currentState' = waitInput;

 end facet huffmanDecoder;

 facet huffmanEncoder (inChan :: channel char;
 fulltree :: design HuffmanTree;
 outChan :: channel bit) :: state_based is

 StateName :: type is [waitInput , lookup, sending, done];

 currentState :: StateName;
 outdata :: sequence(bit);
 table :: Table is treeToTable(fulltree);

 begin

 init_label: currentState' = waitInput;

 input_label: (currentState = waitInput) =>
 inChan'Receive and currentState' = lookup;

 lookup_label: (currentState = lookup) =>
 outdata' = lookup (SigVal(input), table)
 and currentState' = sending ;

 send_label: (currentState = sending) and (outdata = []) =>
 currentState' = waitInput;

 send_notempty: (currentState = sending) and (not (outdata = [])) =>
 (outChan'Send(head(outdata)))
 and outdata' = tail(outdata)
 and currentState' = sending;

end facet huffmanEncoder;

end package huffman;

 27

B.2 dlang description of the Huffman Compressor

This description was hand generated for testing the dlang to C and VHDL translators.

 28

;;(import Pt2PtKernel)
(import Pt2PtFifoKernel)

(data HuffmanTree [a] (Emit a)
 (Node HuffmanTree HuffmanTree))
;

;;; Encoder uses a table lookups.
;;; input symbol (bits 8) -> variable length list of bits for encoding
;;; Accepts input symbol by symbol
;;; Outputs encoded value bit by bit
(define (encode (tree (HuffmanTree a))
 (monad [(@inChan (react (Msg a)))
 (@outChan (react (Msg b)))] Unit))
 (do (val <- (recvMsg [@inChan]))
 (case val
 ((Just x) (do (putList (lookup x (treeToTable tree))
 [@outChan])
 (encode tree [@inChan @outChan])))
 ((Nothing) (do (signal @outChan (ReqSend Nothing))
 (return Unit))))
))

;;; Decoder traverses the HuffmanTree based on the input bitstream,
;;; until it encounters an Emit node, corresponding
;;; to a received symbol.
;;; Accepts input as a bit stream
;;; Outputs decoded symbol (bits 8)
(define (decode (fulltree (HuffmanTree a)) (tree (HuffmanTree a))
 (monad [(@inChan (react (Msg b)))
 (@outChan (react (Msg a)))] Unit))
 (case tree
 ((Emit a) (do (signal @outChan (ReqSend (Just a)))
 (decode fulltree fulltree
 [@inChan @outChan])))
 ((Node l r) (do (val <- (recvMsg [@inChan]))
 (case val
 ((Just v) (case v
 ((True) (decode fulltree r
 [@inChan @outChan]))
 ((False) (decode fulltree l
 [@inChan @outChan]))))
 ((Nothing) (do (signal @outChan
 (ReqSend Nothing))
 (return Unit))))))))

; ==
; Utilities / Support
; ==

 (define (recvMsg (monad [(@chan (react (Msg a)))] (Maybe a)))
 (do (resp <- (signal @chan ReqRecv))
 (case resp ((RspRecv val) (return val)))))

; Helper function to push the elements of a list to an
; output stream in order.

 29

(define (putList (lst (List a))
 (monad [(@chan (react (Msg a)))] Unit))
 (case lst
 ((Cons x xs) (do (signal @chan (ReqSend (Just x)))
 (putList xs [@chan])
 (return Unit)))
 ((Null) (return Unit))))

(define (lookup (key keyTy) (table (List (* keyTy valTy))) valTy)
 (case table
 ((Cons hd tail)
 (case (= (prj 0 hd) key)
 ((True) (prj 1 hd))
 ((False) (lookup key tail))))
))

(define (treeToTable (tree (HuffmanTree a)) (List (* a (List Bool))))
 (treeToTableHelper Null tree))

(define (treeToTableHelper (bs (List Bool)) (tree (HuffmanTree a))
 (List (* a (List Bool))))
 (case tree
 ((Emit bv) (Cons (tuple bv bs) Null))
 ((Node l r) (concat (treeToTableHelper (concat bs (Cons False
Null)) l)
 (treeToTableHelper (concat bs (Cons True
Null)) r)))))

; ==
; Tests
; ==

;;; Definition of a very simple Huffman Tree for test purposes.

(define (tree1 (HuffmanTree (bits 8)))
 (Node (Node (Node (Emit 0b00000001)
 (Emit 0b00000011))
 (Emit 0b00000010))
 (Node (Emit 0b00000100)
 (Emit 0b00000111))))

;;; Data generator for test purposes.
(define (src (monad [(@chan (react (Msg (bits 8))))] Unit))
 (do (signal @chan (ReqSend (Just 0b00000001))) ;; 1 : 3 bits out
 (signal @chan (ReqSend (Just 0b00000111))) ;; 7 : 2 bits 5
 (signal @chan (ReqSend (Just 0b00000010))) ;; 2 : 2 bits 7
 (signal @chan (ReqSend (Just 0b00000100))) ;; 4 : 2 bits 9
 (signal @chan (ReqSend (Just 0b00000001))) ;; 1 : 3 bits 12
 (signal @chan (ReqSend (Just 0b00000111))) ;; 7 : 2 bits 14
 (signal @chan (ReqSend (Just 0b00000010))) ;; 2 : 2 bits 16
 (signal @chan (ReqSend (Just 0b00000111))) ;; 7 : 2 bits 18
 (signal @chan (ReqSend (Just 0b00000011))) ;; 3 : 3 bits 21
 (signal @chan (ReqSend (Just 0b00000011))) ;; 3 : 3 bits 24
 (signal @chan (ReqSend Nothing))
 (return Unit)))

;;; Accumulates received data in a list for test purposes.

 30

(define (sink (acc (List a)) (monad [(@chan (react (Msg a)))] (List a)))
 (do (v <- (recvMsg [@chan]))
 (case v
 ((Nothing) (return acc))
 ((Just x) (sink (Cons x acc) [@chan])))))

;
; This configuration defines a very simple system:
;
; Src -> Encoder -> Decoder -> Sink
;
; Between each two computational blocks is a Point-to-Point
; (Stop and Wait) service.
; There must be exactly one sender and one receiver attached
; to each service.
; If Send (Receive) request arrives, it waits until a matching
; Receive (Send) Request
; is present, at which time both a response is generated
; for both requests.

(configuration huffmanPt2Pt
 (service @src2encoder (Msg (bits 8)) msgHandler dequeue initKernelC
continueHandler)
 (service @decoder2sink (Msg (bits 8)) msgHandler dequeue initKernelC
continueHandler)
 (service @encoder2decoder (Msg Bool) msgHandler dequeue initKernelC
continueHandler)
 (thread (src [@src2encoder]))
 (thread (sink Null [@decoder2sink]))
 (thread (encode (tree1) [@src2encoder @encoder2decoder]))
 (thread (decode (tree1) (tree1) [@encoder2decoder @decoder2sink]))
)

(configuration test
 (thread (lookup 0b00000001 (Cons (tuple 0b00000001 True) Null)))
)

 31

B.3 Automatically generated dlang description of the Huffman Compressor from
Rosetta Specification

This description was automatically generated for testing the Rosetta to dlang and dlang to
C and VHDL translators. Being automatically generated, the formatting is pretty.

 32

(data HuffmanTree (Emit char)
 (Node HuffmanTree HuffmanTree))
(data Pair [a b] (Pair a b))

(define (treeToTable (bs (List bit)) (tree HuffmanTree) (Table char
(List bit)))
 (case (isEmit tree [])
 (True (Cons (Pair (HuffmanTreeVal tree []) bs []) Nil))
 (False (+ (treeToTable (+ bs (Cons 0 Nil)) (Left tree []) [])
(treeToTable (+ bs (Cons 1 Nil)) (Right tree []) [])))))

(define (lookup (key a) (table (Table a b)) b)
 (case (== (first (head table []) []) key [])
 (True (second (head table []) []))
 (False (lookup key (tail table []) []))))

(define (huffmanDecoder (fulltree HuffmanTree)
 (monad [(@inChan (react (Msg bit)))
 (@outChan (react (Msg char)))
 (@inChan_state (state Null bit))
 (@outChan_state (state Null char))
 (@currentState_state (state Null StateName))
 (@tree_state (state Null HuffmanTree))] Null))

 (do (do (currentState <- (get @currentState_state Unit))
 (do (tree <- (get @tree_state Unit))
 (do (inChan <- (get @inChan_state Unit))
 (do (outChan <- (get @outChan_state Unit))
 (return Unit)))))
 (do (do (case (= currentState waitInput [])
 (True (do (do (inChan_response <- (signal @inChan Receive))
 (put @inChan_state Unit inChan_response))
 (do (put @currentState Unit decoding) (return
Unit))))
 (False (return Unit)))
 (do (case (= currentState decoding [])
 (True (do (put @tree Unit (case (== inChan 1 [])
 (True (Right tree []))
 (False (Left tree []))))
 (do (put @currentState Unit checkOutput)
(return Unit))))
 (False (return Unit))) (do (case (= currentState
checkOutput [])
 (True (do (put
@currentState Unit waitInput) (return Unit)))
 (False (return Unit)))
 (do (case (and (= currentState
checkOutput []) (isEmit tree []) [])
 (True (do (signal
@outChan (Send (HuffmanTreeVal tree [])))
 (do (put @tree Unit
fulltree) (do (put @currentState Unit waitInput) (return Unit)))))
 (False (return Unit)))
 (return Unit)))))
 (huffmanDecoder fulltree [@inChan @outChan @inChan_state
@outChan_state]))))

 33

(define (huffmanEncoder (fulltree HuffmanTree)
 (monad [(@inChan (react (Msg char)))
 (@outChan (react (Msg bit)))
 (@inChan_state (state Null char))
 (@outChan_state (state Null bit))
 (@currentState_state (state Null StateName))
 (@outdata_state (state Null (List bit)))] Null))

 (do (do (currentState <- (get @currentState_state Unit))
 (do (outdata <- (get @outdata_state Unit))
 (do (inChan <- (get @inChan_state Unit))
 (do (outChan <- (get @outChan_state Unit))
 (return Unit)))))
 (do (do (case (= currentState waitInput [])
 (True (do (do (inChan_response <- (signal @inChan
Receive))
 (put @inChan_state Unit inChan_response))
 (do (put @currentState Unit lookup) (return
Unit))))
 (False (return Unit)))
 (do (case (= currentState lookup [])
 (True (do (put @outdata Unit (lookup (SigVal
input []) table []))
 (do (put @currentState Unit sending)
(return Unit))))
 (False (return Unit)))
 (do (case (and (= currentState sending []) (=
outdata Nil []) [])
 (True (do (put @currentState Unit waitInput)
(return Unit)))
 (False (return Unit)))
 (do (case (and (= currentState sending []) (not
(= outdata Nil []) []) [])
 (True (do (signal @outChan (Send (head
outdata [])))
 (do (put @outdata Unit (tail
outdata []))
 (do (put @currentState Unit
sending) (return Unit)))))
 (False (return Unit))) (return Unit)))))
 (huffmanEncoder fulltree [@inChan @outChan @inChan_state
@outChan_state]))))

 34

B.4 Automatically generated C description of the Huffman Compressor from
hand-coded dlang

This description was automatically generated for testing the Rosetta to dlang and dlang to
C and VHDL translators. Being automatically generated, the formatting is pretty.

 35

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <stdarg.h>
#include "dlangCore.h"
typedef int BitVector;
typedef void** PTR;
typedef void** AThread;
typedef void** Bool;
typedef void** HuffmanTree;
typedef void** KernelState;
typedef void** List;
typedef void** Maybe;
typedef void** Msg;
typedef void** Unit;
void* tag_AThread = (void*) 0;
void* tag_Cons = (void*) 0;
void* tag_Emit = (void*) 0;
void* tag_False = (void*) 0;
void* tag_Just = (void*) 1;
void* tag_KS = (void*) 0;
void* tag_Node = (void*) 1;
void* tag_Nothing = (void*) 0;
void* tag_Null = (void*) 1;
void* tag_ReqRecv = (void*) 0;
void* tag_ReqSend = (void*) 1;
void* tag_RspAck = (void*) 2;
void* tag_RspRecv = (void*) 3;
void* tag_True = (void*) 1;
void* tag_Unit = (void*) 0;
List append (List l1,List l2);
List concat (List l1,List l2);
Unit encode (HuffmanTree tree,Msg inChan,Msg outChan);
Unit decode (HuffmanTree fulltree,HuffmanTree tree,Msg inChan,Msg
outChan);
Maybe recvMsg (Msg chan);
Unit putList (List lst,Msg chan);
PTR lookup (PTR key,List table);
List treeToTable (HuffmanTree tree);
List treeToTableHelper (List bs,HuffmanTree tree);
HuffmanTree tree1 ();
Unit src (Msg chan);
List sink (List acc,Msg chan);
Unit initKernelC (int numthreads,void** kstate);
Maybe dequeue (int dummy,void** kstate);
Unit msgHandler (int tid,int chan,Msg msg,void** kstate);
Unit handleSend (int sendTid,Msg msg,void** kstate);
Unit handleRecv (int recvTid,Msg msg,void** kstate);
Unit scheduleSendRecv (int sendTid,Msg sendMsg,int recvTid,void** kstate);
List consEOL (PTR value,List lst);
int main ();
List append (List l1,List l2)
 {List var0 = l1 ;
 switch ((int)((var0) [0]))
 {case 1 :
 {return (l2);}

 36

 case 0 :
 {PTR hd = (PTR)((var0) [1]) ;
 List tail = (List)((var0) [2]) ;
 {List var1 = (List)(malloc (12)) ;
 ((var1) [0]) = ((PTR)(0));
 ((var1) [1]) = ((PTR)(hd));
 ((var1) [2]) = ((PTR)(append ((List)(tail),(List)(l2))));
 return (var1);}}}}
List concat (List l1,List l2)
 {return (append ((List)(l1),(List)(l2)));}
Unit encode (HuffmanTree tree,Msg inChan,Msg outChan)
 {Maybe val = recvMsg ((Msg)(inChan)) ;
 Maybe var0 = val ;
 switch ((int)((var0) [0]))
 {case 1 :
 {PTR x = (PTR)((var0) [1]) ;
 {putList ((List)(lookup ((PTR)(x),(List)(treeToTable
((HuffmanTree)(tree))))),(Msg)(outChan));
 return (encode
((HuffmanTree)(tree),(Msg)(inChan),(Msg)(outChan)));}}
 case 0 :
 {{Msg var1 = (Msg)(malloc (8)) ;
 ((var1) [0]) = ((PTR)(1));
 ((var1) [1]) = ((PTR)(&tag_Nothing));
 dlangSignal ((Msg)(outChan),(Msg)(var1));
 return (&tag_Unit);}}}}
Unit decode (HuffmanTree fulltree,HuffmanTree tree,Msg inChan,Msg outChan)
 {HuffmanTree var0 = tree ;
 switch ((int)((var0) [0]))
 {case 0 :
 {PTR a = (PTR)((var0) [1]) ;
 {Maybe var1 = (Maybe)(malloc (8)) ;
 ((var1) [0]) = ((PTR)(1));
 ((var1) [1]) = ((PTR)(a));
 Msg var2 = (Msg)(malloc (8)) ;
 ((var2) [0]) = ((PTR)(1));
 ((var2) [1]) = ((PTR)(var1));
 dlangSignal ((Msg)(outChan),(Msg)(var2));
 return (decode
((HuffmanTree)(fulltree),(HuffmanTree)(fulltree),(Msg)(inChan),(Msg)(outCh
an)));}}
 case 1 :
 {HuffmanTree l = (HuffmanTree)((var0) [1]) ;
 HuffmanTree r = (HuffmanTree)((var0) [2]) ;
 {Maybe val = recvMsg ((Msg)(inChan)) ;
 Maybe var3 = val ;
 switch ((int)((var3) [0]))
 {case 1 :
 {PTR v = (PTR)((var3) [1]) ;
 {Bool var4 = v ;
 switch ((int)((var4) [0]))
 {case 1 :
 {return (decode
((HuffmanTree)(fulltree),(HuffmanTree)(r),(Msg)(inChan),(Msg)(outChan)));}
 case 0 :

 37

 {return (decode
((HuffmanTree)(fulltree),(HuffmanTree)(l),(Msg)(inChan),(Msg)(outChan)));}
}}}
 case 0 :
 {{Msg var5 = (Msg)(malloc (8)) ;
 ((var5) [0]) = ((PTR)(1));
 ((var5) [1]) = ((PTR)(&tag_Nothing));
 dlangSignal ((Msg)(outChan),(Msg)(var5));
 return (&tag_Unit);}}}}}}}
Maybe recvMsg (Msg chan)
 {Msg resp = dlangSignal ((Msg)(chan),(Msg)(&tag_ReqRecv)) ;
 Msg var0 = resp ;
 switch ((int)((var0) [0]))
 {case 3 :
 {Maybe val = (Maybe)((var0) [1]) ;
 return (val);}}}
Unit putList (List lst,Msg chan)
 {List var0 = lst ;
 switch ((int)((var0) [0]))
 {case 0 :
 {PTR x = (PTR)((var0) [1]) ;
 List xs = (List)((var0) [2]) ;
 {Maybe var1 = (Maybe)(malloc (8)) ;
 ((var1) [0]) = ((PTR)(1));
 ((var1) [1]) = ((PTR)(x));
 Msg var2 = (Msg)(malloc (8)) ;
 ((var2) [0]) = ((PTR)(1));
 ((var2) [1]) = ((PTR)(var1));
 dlangSignal ((Msg)(chan),(Msg)(var2));
 {putList ((List)(xs),(Msg)(chan));
 return (&tag_Unit);}}}
 case 1 :
 {return (&tag_Unit);}}}
PTR lookup (PTR key,List table)
 {List var0 = table ;
 switch ((int)((var0) [0]))
 {case 0 :
 {PTR hd = (PTR)((var0) [1]) ;
 List tail = (List)((var0) [2]) ;
 {Bool var1 = ((PTR)((hd) [1])) == (key) ? &tag_True : &tag_False
;
 switch ((int)((var1) [0]))
 {case 1 :
 {return ((PTR)((hd) [2]));}
 case 0 :
 {return (lookup ((PTR)(key),(List)(tail)));}}}}}}
List treeToTable (HuffmanTree tree)
 {return (treeToTableHelper ((List)(&tag_Null),(HuffmanTree)(tree)));}
List treeToTableHelper (List bs,HuffmanTree tree)
 {HuffmanTree var0 = tree ;
 switch ((int)((var0) [0]))
 {case 0 :
 {PTR bv = (PTR)((var0) [1]) ;
 {void** var1 = (void**)(malloc (12)) ;
 ((var1) [0]) = ((PTR)(0));
 ((var1) [1]) = ((PTR)(bv));
 ((var1) [2]) = ((PTR)(bs));

 38

 List var2 = (List)(malloc (12)) ;
 ((var2) [0]) = ((PTR)(0));
 ((var2) [1]) = ((PTR)(var1));
 ((var2) [2]) = ((PTR)(&tag_Null));
 return (var2);}}
 case 1 :
 {HuffmanTree l = (HuffmanTree)((var0) [1]) ;
 HuffmanTree r = (HuffmanTree)((var0) [2]) ;
 {List var3 = (List)(malloc (12)) ;
 ((var3) [0]) = ((PTR)(0));
 ((var3) [1]) = ((PTR)(&tag_False));
 ((var3) [2]) = ((PTR)(&tag_Null));
 List var4 = (List)(malloc (12)) ;
 ((var4) [0]) = ((PTR)(0));
 ((var4) [1]) = ((PTR)(&tag_True));
 ((var4) [2]) = ((PTR)(&tag_Null));
 return (concat ((List)(treeToTableHelper ((List)(concat
((List)(bs),(List)(var3))),(HuffmanTree)(l))),(List)(treeToTableHelper
((List)(concat ((List)(bs),(List)(var4))),(HuffmanTree)(r)))));}}}}
HuffmanTree tree1 ()
 {HuffmanTree var0 = (HuffmanTree)(malloc (8)) ;
 ((var0) [0]) = ((PTR)(0));
 ((var0) [1]) = ((PTR)(1));
 HuffmanTree var1 = (HuffmanTree)(malloc (8)) ;
 ((var1) [0]) = ((PTR)(0));
 ((var1) [1]) = ((PTR)(3));
 HuffmanTree var2 = (HuffmanTree)(malloc (12)) ;
 ((var2) [0]) = ((PTR)(1));
 ((var2) [1]) = ((PTR)(var0));
 ((var2) [2]) = ((PTR)(var1));
 HuffmanTree var3 = (HuffmanTree)(malloc (8)) ;
 ((var3) [0]) = ((PTR)(0));
 ((var3) [1]) = ((PTR)(2));
 HuffmanTree var4 = (HuffmanTree)(malloc (12)) ;
 ((var4) [0]) = ((PTR)(1));
 ((var4) [1]) = ((PTR)(var2));
 ((var4) [2]) = ((PTR)(var3));
 HuffmanTree var5 = (HuffmanTree)(malloc (8)) ;
 ((var5) [0]) = ((PTR)(0));
 ((var5) [1]) = ((PTR)(4));
 HuffmanTree var6 = (HuffmanTree)(malloc (8)) ;
 ((var6) [0]) = ((PTR)(0));
 ((var6) [1]) = ((PTR)(7));
 HuffmanTree var7 = (HuffmanTree)(malloc (12)) ;
 ((var7) [0]) = ((PTR)(1));
 ((var7) [1]) = ((PTR)(var5));
 ((var7) [2]) = ((PTR)(var6));
 HuffmanTree var8 = (HuffmanTree)(malloc (12)) ;
 ((var8) [0]) = ((PTR)(1));
 ((var8) [1]) = ((PTR)(var4));
 ((var8) [2]) = ((PTR)(var7));
 return (var8);}
Unit src (Msg chan)
 {Maybe var0 = (Maybe)(malloc (8)) ;
 ((var0) [0]) = ((PTR)(1));
 ((var0) [1]) = ((PTR)(1));
 Msg var1 = (Msg)(malloc (8)) ;

 39

 ((var1) [0]) = ((PTR)(1));
 ((var1) [1]) = ((PTR)(var0));
 dlangSignal ((Msg)(chan),(Msg)(var1));
 {Maybe var2 = (Maybe)(malloc (8)) ;
 ((var2) [0]) = ((PTR)(1));
 ((var2) [1]) = ((PTR)(7));
 Msg var3 = (Msg)(malloc (8)) ;
 ((var3) [0]) = ((PTR)(1));
 ((var3) [1]) = ((PTR)(var2));
 dlangSignal ((Msg)(chan),(Msg)(var3));
 {Maybe var4 = (Maybe)(malloc (8)) ;
 ((var4) [0]) = ((PTR)(1));
 ((var4) [1]) = ((PTR)(2));
 Msg var5 = (Msg)(malloc (8)) ;
 ((var5) [0]) = ((PTR)(1));
 ((var5) [1]) = ((PTR)(var4));
 dlangSignal ((Msg)(chan),(Msg)(var5));
 {Maybe var6 = (Maybe)(malloc (8)) ;
 ((var6) [0]) = ((PTR)(1));
 ((var6) [1]) = ((PTR)(4));
 Msg var7 = (Msg)(malloc (8)) ;
 ((var7) [0]) = ((PTR)(1));
 ((var7) [1]) = ((PTR)(var6));
 dlangSignal ((Msg)(chan),(Msg)(var7));
 {Maybe var8 = (Maybe)(malloc (8)) ;
 ((var8) [0]) = ((PTR)(1));
 ((var8) [1]) = ((PTR)(1));
 Msg var9 = (Msg)(malloc (8)) ;
 ((var9) [0]) = ((PTR)(1));
 ((var9) [1]) = ((PTR)(var8));
 dlangSignal ((Msg)(chan),(Msg)(var9));
 {Maybe var10 = (Maybe)(malloc (8)) ;
 ((var10) [0]) = ((PTR)(1));
 ((var10) [1]) = ((PTR)(7));
 Msg var11 = (Msg)(malloc (8)) ;
 ((var11) [0]) = ((PTR)(1));
 ((var11) [1]) = ((PTR)(var10));
 dlangSignal ((Msg)(chan),(Msg)(var11));
 {Maybe var12 = (Maybe)(malloc (8)) ;
 ((var12) [0]) = ((PTR)(1));
 ((var12) [1]) = ((PTR)(2));
 Msg var13 = (Msg)(malloc (8)) ;
 ((var13) [0]) = ((PTR)(1));
 ((var13) [1]) = ((PTR)(var12));
 dlangSignal ((Msg)(chan),(Msg)(var13));
 {Maybe var14 = (Maybe)(malloc (8)) ;
 ((var14) [0]) = ((PTR)(1));
 ((var14) [1]) = ((PTR)(7));
 Msg var15 = (Msg)(malloc (8)) ;
 ((var15) [0]) = ((PTR)(1));
 ((var15) [1]) = ((PTR)(var14));
 dlangSignal ((Msg)(chan),(Msg)(var15));
 {Maybe var16 = (Maybe)(malloc (8)) ;
 ((var16) [0]) = ((PTR)(1));
 ((var16) [1]) = ((PTR)(3));
 Msg var17 = (Msg)(malloc (8)) ;
 ((var17) [0]) = ((PTR)(1));

 40

 ((var17) [1]) = ((PTR)(var16));
 dlangSignal ((Msg)(chan),(Msg)(var17));
 {Maybe var18 = (Maybe)(malloc (8)) ;
 ((var18) [0]) = ((PTR)(1));
 ((var18) [1]) = ((PTR)(3));
 Msg var19 = (Msg)(malloc (8)) ;
 ((var19) [0]) = ((PTR)(1));
 ((var19) [1]) = ((PTR)(var18));
 dlangSignal ((Msg)(chan),(Msg)(var19));
 {Msg var20 = (Msg)(malloc (8)) ;
 ((var20) [0]) = ((PTR)(1));
 ((var20) [1]) = ((PTR)(&tag_Nothing));
 dlangSignal ((Msg)(chan),(Msg)(var20));
 return (&tag_Unit);}}}}}}}}}}}
List sink (List acc,Msg chan)
 {Maybe v = recvMsg ((Msg)(chan)) ;
 Maybe var0 = v ;
 switch ((int)((var0) [0]))
 {case 0 :
 {return (acc);}
 case 1 :
 {PTR x = (PTR)((var0) [1]) ;
 {List var1 = (List)(malloc (12)) ;
 ((var1) [0]) = ((PTR)(0));
 ((var1) [1]) = ((PTR)(x));
 ((var1) [2]) = ((PTR)(acc));
 return (sink ((List)(var1),(Msg)(chan)));}}}}
Unit initKernelC (int numthreads,void** kstate)
 {KernelState var0 = (KernelState)(malloc (16)) ;
 ((var0) [0]) = ((PTR)(0));
 ((var0) [1]) = ((PTR)(&tag_Nothing));
 ((var0) [2]) = ((PTR)(&tag_Null));
 ((var0) [3]) = ((PTR)(&tag_Null));
 (kstate[(int)(0)]) = (var0);
 return (&tag_Unit);}
Maybe dequeue (int dummy,void** kstate)
 {KernelState ks = kstate[(int)(0)] ;
 KernelState var0 = ks ;
 switch ((int)((var0) [0]))
 {case 0 :
 {Maybe wait = (Maybe)((var0) [1]) ;
 List rtr = (List)((var0) [2]) ;
 List fifo = (List)((var0) [3]) ;
 {List var1 = rtr ;
 switch ((int)((var1) [0]))
 {case 1 :
 {return (&tag_Nothing);}
 case 0 :
 {PTR r = (PTR)((var1) [1]) ;
 List rest = (List)((var1) [2]) ;
 {KernelState var2 = (KernelState)(malloc (16)) ;
 ((var2) [0]) = ((PTR)(0));
 ((var2) [1]) = ((PTR)(wait));
 ((var2) [2]) = ((PTR)(rest));
 ((var2) [3]) = ((PTR)(fifo));
 Maybe var3 = (Maybe)(malloc (8)) ;
 ((var3) [0]) = ((PTR)(1));

 41

 ((var3) [1]) = ((PTR)(r));
 (kstate[(int)(0)]) = (var2);
 return (var3);}}}}}}}
Unit msgHandler (int tid,int chan,Msg msg,void** kstate)
 {Msg var0 = msg ;
 switch ((int)((var0) [0]))
 {case 1 :
 {Maybe value = (Maybe)((var0) [1]) ;
 return (handleSend ((int)(tid),(Msg)(msg),(void**)(kstate)));}
 case 0 :
 {return (handleRecv ((int)(tid),(Msg)(msg),(void**)(kstate)));}}}
Unit handleSend (int sendTid,Msg msg,void** kstate)
 {{KernelState ks = kstate[(int)(0)] ;
 KernelState var0 = ks ;
 switch ((int)((var0) [0]))
 {case 0 :
 {Maybe wait = (Maybe)((var0) [1]) ;
 List rtr = (List)((var0) [2]) ;
 List fifo = (List)((var0) [3]) ;
 {Maybe var1 = wait ;
 switch ((int)((var1) [0]))
 {case 0 :
 {{Msg var2 = msg ;
 switch ((int)((var2) [0]))
 {case 1 :
 {Maybe val = (Maybe)((var2) [1]) ;
 {AThread var3 = (AThread)(malloc (12)) ;
 ((var3) [0]) = ((PTR)(0));
 ((var3) [1]) = ((PTR)(sendTid));
 ((var3) [2]) = ((PTR)(&tag_RspAck));
 List var4 = (List)(malloc (12)) ;
 ((var4) [0]) = ((PTR)(0));
 ((var4) [1]) = ((PTR)(var3));
 ((var4) [2]) = ((PTR)(rtr));
 KernelState var5 = (KernelState)(malloc (16)) ;
 ((var5) [0]) = ((PTR)(0));
 ((var5) [1]) = ((PTR)(&tag_Nothing));
 ((var5) [2]) = ((PTR)(var4));
 ((var5) [3]) = ((PTR)(consEOL ((Maybe)(val),
 (List)(fifo))));
 (kstate[(int)(0)]) = (var5);
 &tag_Unit;}
 break;}}}
 break;}
 case 1 :
 {PTR thd = (PTR)((var1) [1]) ;
 {AThread var6 = thd ;
 switch ((int)((var6) [0]))
 {case 0 :
 {int recvTid = (int)((var6) [1]) ;
 Msg x = (Msg)((var6) [2]) ;
 scheduleSendRecv ((int)(sendTid), (Msg)(msg),
 (int)(recvTid), (void**)(kstate));
 break;}}}
 break;}}}
 break;}}
 return (&tag_Unit);}}

 42

Unit handleRecv (int recvTid,Msg msg,void** kstate)
 {{KernelState ks = kstate[(int)(0)] ;
 KernelState var0 = ks ;
 switch ((int)((var0) [0]))
 {case 0 :
 {Maybe wait = (Maybe)((var0) [1]) ;
 List rtr = (List)((var0) [2]) ;
 List fifo = (List)((var0) [3]) ;
 {Maybe var1 = wait ;
 switch ((int)((var1) [0]))
 {case 0 :
 {{List var2 = fifo ;
 switch ((int)((var2) [0]))
 {case 1 :
 {{AThread var3 = (AThread)(malloc (12)) ;
 ((var3) [0]) = ((PTR)(0));
 ((var3) [1]) = ((PTR)(recvTid));
 ((var3) [2]) = ((PTR)(msg));
 Maybe var4 = (Maybe)(malloc (8)) ;
 ((var4) [0]) = ((PTR)(1));
 ((var4) [1]) = ((PTR)(var3));
 KernelState var5 = (KernelState)(malloc (16)) ;
 ((var5) [0]) = ((PTR)(0));
 ((var5) [1]) = ((PTR)(var4));
 ((var5) [2]) = ((PTR)(rtr));
 ((var5) [3]) = ((PTR)(fifo));
 (kstate[(int)(0)]) = (var5);
 &tag_Unit;}
 break;}
 case 0 :
 {PTR hd = (PTR)((var2) [1]) ;
 List tl = (List)((var2) [2]) ;
 {Msg var6 = (Msg)(malloc (8)) ;
 ((var6) [0]) = ((PTR)(3));
 ((var6) [1]) = ((PTR)(hd));
 AThread var7 = (AThread)(malloc (12)) ;
 ((var7) [0]) = ((PTR)(0));
 ((var7) [1]) = ((PTR)(recvTid));
 ((var7) [2]) = ((PTR)(var6));
 List var8 = (List)(malloc (12)) ;
 ((var8) [0]) = ((PTR)(0));
 ((var8) [1]) = ((PTR)(var7));
 ((var8) [2]) = ((PTR)(rtr));
 KernelState var9 = (KernelState)(malloc (16)) ;
 ((var9) [0]) = ((PTR)(0));
 ((var9) [1]) = ((PTR)(&tag_Nothing));
 ((var9) [2]) = ((PTR)(var8));
 ((var9) [3]) = ((PTR)(tl));
 (kstate[(int)(0)]) = (var9);
 &tag_Unit;}
 break;}}}
 break;}
 case 1 :
 {PTR thd = (PTR)((var1) [1]) ;
 {AThread var10 = thd ;
 switch ((int)((var10) [0]))
 {case 0 :

 43

 {int sendTid = (int)((var10) [1]) ;
 Msg sendMsg = (Msg)((var10) [2]) ;
 scheduleSendRecv
((int)(sendTid),(Msg)(sendMsg),(int)(recvTid),(void**)(kstate));
 break;}}}
 break;}}}
 break;}}
 return (&tag_Unit);}}
Unit scheduleSendRecv (int sendTid,Msg sendMsg,int recvTid,void** kstate)
 {Msg var0 = sendMsg ;
 switch ((int)((var0) [0]))
 {case 1 :
 {Maybe value = (Maybe)((var0) [1]) ;
 {AThread var1 = (AThread)(malloc (12)) ;
 ((var1) [0]) = ((PTR)(0));
 ((var1) [1]) = ((PTR)(sendTid));
 ((var1) [2]) = ((PTR)(&tag_RspAck));
 Msg var2 = (Msg)(malloc (8)) ;
 ((var2) [0]) = ((PTR)(3));
 ((var2) [1]) = ((PTR)(value));
 AThread var3 = (AThread)(malloc (12)) ;
 ((var3) [0]) = ((PTR)(0));
 ((var3) [1]) = ((PTR)(recvTid));
 ((var3) [2]) = ((PTR)(var2));
 List var4 = (List)(malloc (12)) ;
 ((var4) [0]) = ((PTR)(0));
 ((var4) [1]) = ((PTR)(var3));
 ((var4) [2]) = ((PTR)(&tag_Null));
 List var5 = (List)(malloc (12)) ;
 ((var5) [0]) = ((PTR)(0));
 ((var5) [1]) = ((PTR)(var1));
 ((var5) [2]) = ((PTR)(var4));
 KernelState var6 = (KernelState)(malloc (16)) ;
 ((var6) [0]) = ((PTR)(0));
 ((var6) [1]) = ((PTR)(&tag_Nothing));
 ((var6) [2]) = ((PTR)(var5));
 ((var6) [3]) = ((PTR)(&tag_Null));
 (kstate[(int)(0)]) = (var6);
 return (&tag_Unit);}}}}
List consEOL (PTR value,List lst)
 {List var0 = lst ;
 switch ((int)((var0) [0]))
 {case 1 :
 {{List var1 = (List)(malloc (12)) ;
 ((var1) [0]) = ((PTR)(0));
 ((var1) [1]) = ((PTR)(value));
 ((var1) [2]) = ((PTR)(&tag_Null));
 return (var1);}}
 case 0 :
 {PTR hd = (PTR)((var0) [1]) ;
 List tl = (List)((var0) [2]) ;
 {List var2 = (List)(malloc (12)) ;
 ((var2) [0]) = ((PTR)(0));
 ((var2) [1]) = ((PTR)(hd));
 ((var2) [2]) = ((PTR)(consEOL ((PTR)(value),(List)(tl))));
 return (var2);}}}}
void* thread_1 (void *args)

 44

 {Msg src2encoder = ((void**)args)[0] ;
 {return (src ((Msg)(src2encoder)));}}
void* thread_2 (void *args)
 {Msg decoder2sink = ((void**)args)[0] ;
 {return (sink ((List)(&tag_Null),(Msg)(decoder2sink)));}}
void* thread_3 (void *args)
 {Msg src2encoder = ((void**)args)[0] ;
 Msg encoder2decoder = ((void**)args)[1] ;
 {return (encode ((HuffmanTree)(tree1
()),(Msg)(src2encoder),(Msg)(encoder2decoder)));}}
void* thread_4 (void *args)
 {Msg encoder2decoder = ((void**)args)[0] ;
 Msg decoder2sink = ((void**)args)[1] ;
 {return (decode ((HuffmanTree)(tree1 ()),(HuffmanTree)(tree1
()),(Msg)(encoder2decoder),(Msg)(decoder2sink)));}}
int main ()
 {Msg src2encoder = createService (2,&msgHandler,&dequeue,&initKernelC) ;
 Msg decoder2sink = createService (2,&msgHandler,&dequeue,&initKernelC)
;
 Msg encoder2decoder = createService
(2,&msgHandler,&dequeue,&initKernelC) ;
 pthread_t _pt_thread_1 ;
 pthread_t _pt_thread_2 ;
 pthread_t _pt_thread_3 ;
 pthread_t _pt_thread_4 ;
 dlang_thread_create (&_pt_thread_1,thread_1,1,src2encoder);
 dlang_thread_create (&_pt_thread_2,thread_2,1,decoder2sink);
 dlang_thread_create
(&_pt_thread_3,thread_3,2,src2encoder,encoder2decoder);
 dlang_thread_create
(&_pt_thread_4,thread_4,2,encoder2decoder,decoder2sink);
 pthread_join (_pt_thread_1,NULL);
 pthread_join (_pt_thread_2,NULL);
 pthread_join (_pt_thread_3,NULL);
 pthread_join (_pt_thread_4,NULL);
 return (0);}

 45

Appendix C – Rosetta Specifications
This contains additional Rosetta specifications developed during the feasibility study.

C.1 Advanced Encryption Standard (AES)

This specification represents an early attempt to capture an important radio function,
encryption. As a preliminary specification, it explores a number of approaches to defining
the AES function. Further refinement is in order.

 46

//----
// AES Encryption Specification
//
// Author: Perry Alexander
// Date: Wed Sep 12 14:20:30 CDT 2007
// Revision:
// Thu Jul 24 12:05:24 CDT 2008 - wpa -- added initialization to the
// AES facet.
// Tue Sep 25 15:00:13 CDT 2007 - wpa - first reasonable release
//
// Todo:
// - Must define the sbox constant value
// - Must define the rcon constant value
// - Define rcon iteration in expand key
// - Redefine subBytes with subBytesRow
//
// Basic AES algorithm
//
// AES(state,cipherkey)
// KeyExpansion(cipherkey,expandedkey)
// addroundkey(state, expandedkey)
// for (i=1; i<Nr; i++){
// round(state,expandedkey + Nb*i)}
// finalround(state,expandkey + Nb * Nr)
//
//----

package aes()::state_based is
 export AES;
 ////--- Basic Types and Constants

 // Define a type for byte
 byte :: type is word(8);

 // Define a types for a 4 byte row and a 4x4 byte array
 Rowtype :: type is sel(r::sequence(byte) | #r = 4);
 blockType :: type is sel(b::sequence(rowType) | #b = 4);

 // Byte rotate a word
 rotate(a::rowType)::rowType is rotl(a);

 // Grab a column as a sequence
 column(x::{0,1,2,3}; a::blockType)::rowType is
 [a(0)(x),a(1)(x),a(2)(x),a(3)(x)];

 // Declare the sbox constant array
 sboxType :: type is sel(x::sequence(byte) | #x=16);
 sbox :: sboxType is constant;

 // Declare the rcon constant array
 rconType :: type is sel(x::sequence(byte) | #x=256);
 rcon :: rconType is constant;

 ////---- Basic Encryption Utility Functions

 // Define addRoundKey as zipped xor
 addRoundRow(a,k::rowType)::rowType is zip(xor,a,k);

 47

 addRoundKey(a,k::blockType)::blockType is zip(addRoundRow,a,k);

 // Define shiftRow using explicit sequence construction
 shiftRow(a::blockType)::blockType is
 [
 a(0),
 rotl(a(1)),
 rotl(rotl(a(2))),
 rotl(rotl(rotl(a(3))))
];

 // Define subBytes using properties.
 // Each byte in the result is defined as the value in sbox indexed by
 // the value in a.
 subBytes(a::blockType)::blockType
 where forall(i::{0,1,2,3} |
 forall(j::{0,1,2,3} | subBytes(a)(i)(j) =
 sbox(bv2nat(a(i)(j)))));

 // Define utility function subBytesRow using explicit
 // sequence creation
 subBytesRow(a::rowType)::rowType is
 [sbox(bv2nat(a(0))),
 sbox(bv2nat(a(1))),
 sbox(bv2nat(a(2))),
 sbox(bv2nat(a(3)))];

 // Multiply a row from a by a column from b
 mkElem(y::{0,1,2,3};a,b::blockType)::byte is
rowMult(a(x),column(b,y));

 // Define mixColumn as matrix multiplication in the classical
 // style. mkElem
 // calcuates an element of the product. Uses explicit matrix creation
 mixColumn(a::blockType)::blockType is
 let b::blockType be [[x"02",x"03",x"01",x"01"],
 [x"01",x"02",x"03",x"01"],
 [x"01",x"01",x"02",x"03"],
 [x"03",x"01",x"01",x"02"]] in

[[mkElem(0,0,a,b),mkElem(0,1,a,b),mkElem(0,2,a,b),mkElem(0,3,a,b)],

[mkElem(1,0,a,b),mkElem(1,1,a,b),mkElem(1,2,a,b),mkElem(1,3,a,b)],

[mkElem(2,0,a,b),mkElem(2,1,a,b),mkElem(2,2,a,b),mkElem(2,3,a,b)],

[mkElem(3,0,a,b),mkElem(3,1,a,b),mkElem(3,2,a,b),mkElem(3,3,a,b)]]
 end let;

 // Define multiplication of two rows to get an element. Use xor
 // as addition defined by the AES specifiation
 rowMult(a,b :: rowType)::byte is
 rmult(a(0),b(0))
 xor rmult(a(1),b(1))
 xor rmult(a(2),b(2))
 xor rmult(a(3),b(3));

 48

 // Multiply by 1 or zero. Basically a word and.
 bitMult(y::byte,x::bit)::byte is
 map(<*(b::bit)::bit is b and x*>,y);

 // Generate a single minterm in the multiply
 multTerm(x,b,y)::word(16) is
 lshl(x) xor bitMult(b,y);

 // Multiply two bytes
 byteMult(x,y::byte)::word(16) is
 reduce(multTerm(y),x"0000",x);

 // Define Rijndael's multiplication for bytes using byte multiply
 // Could also be a lookup table. This function should be validated
 // with the AES specification if this actually gets used
 rmult(a,b :: byte)::byte is
 let x::word(16) be byteMult(a,b) in
 x sub [15,..8] xor x sub [7,..0];

 // Define Key Schedule function using replace and rotate.
 // subBytes row using same replacement array as subBytes.
 // There are two definitions
 // for this in the documentation. This is the second called
 // core
 core(a::rowType; i::natural)::rowType is
 let s::rowType be subBytesRow(rotate(a)) in
 replace(s,0,s(0) xor rcon(i))
 end let;

 //// Key Expansion

 // Key sizes are in bytes and must be 16,24,34 - fix this type earlier
 // Compare key size with expanded key size to control recursion
 // For 256 bit keys, there is an extra sbox lookup that
 // is not included in this specification
 // I am quite skeptical that this function is completely correct
 // Must define rconIteration which is an index into the rcon table
 expandKey(key::sequence(byte);
 keySize,xKeySize::natural)::sequence(byte) is
 if keySize=xKeySize
 then key
 else
 let t::sequence(byte) be
 core(key sub [#key-4,#key-3,#key-2,#key-1],rconIteration) in
 expandKey(key &
 zip(xor,(key sub [#key-4,#key-3,#key-2,#key-1]),t),
 keySize + 4,
 xKeySize)
 end let;
 end if;

 //// Utility functions for the encryption facet

 // Call the utility functions in sequence as an AES round
 aesRound(state::blockType; roundKey::blockType)::blockType is
 addRoundKey(mixColumns(shiftRows(subBtyes(state))),roundKey);

 49

 // Create a round key from a sequence of bytes
 createRoundKey(xk::sequence(byte))::blockType is
 [[xk(0),xk(4),xk(8),xk(12)]
 [xk(1),xk(5),xk(9),xk(13)]
 [xk(2),xk(6),xk(10),xk(14)]
 [xk(3),xk(7),xk(11),xk(15)]];

 ////
 //// AES Encryption Facet
 // This is a state-based facet whose state is an encryption block.
 // round counts the number of rounds for a block. Round 0 loads a
 // block from input and subsequent rounds apply the
 // encryption algorithm.
 // Round nbrRounds - 1 is the last round for a block and subsequently
 // outputs the encryption state.
 //
 // Assumptions:
 // - There is no input ready signal. The device pulls input when it is
 // ready for input.
 // - If the key length is not 16, 24, or 32 bytes,
 // behavior is not defined.
 // - expandedKey is constant for each instance of the facet. Move the
 // initialization to a term to vary the key
 // - What drives state change is not defined.
 // Refine to a different domain to specify.
 // - Make sure the interface and body syntax matches
 // current specifications
 facet interface AES(din::input sequence(byte);
 dout::output sequence(byte);
 key::input sequence(byte);
 reset::input boolean;
 done::output boolean;
 size,xsize::design natural) ::
 state_based(blockType)
 end facet interface AES;

 facet body AES is
 // Expand the key
 expandedKey :: sequence(byte) is expandKey(key,size,xsize);
 // Calculate counter from key length
 nbrRounds :: natural is if #key = 16 then 10
 elseif #key = 24 then 12
 elseif #key = 32 then 14
 end if;
 // encryption round counter
 round :: natural;
 // input buffer
 buff :: sequence(byte);
 begin
 // Update the round counter after each step.
 // If reset is true, then set the round to 0.
 nextRound: round' = if reset then 0
 elseif round<nbrRounds then round+1
 else 0
 end if;
 // Create the round key for each step
 nextKey: roundKey' = createRoundKey(expandedKey sub

 50

 [round,..round+15]);
 // Latch the inputs to make sure they do not change
 // during the rounds
 latch: buff' = if round'=0 then din else buff end if;
 // Either initialize the state, or move to the next state
 // based on the counter.
 nextState: s' = if round = 0
 then aesRound([din sub [0,..3],
 din sub [4,..7],
 din sub [8,..11],
 din sub [12,..15]],roundKey)
 else aesRound(s,roundKey)
 end if;
 // Output the block after the last round.
 // Hold output constant until last round is processed.
 nextOut: dout' = if round = nbrRounds - 1
 then s(0) & s(1) & s(2) & s(3)
 else dout
 end if;
 // Output a done signal when the encryptor is done with one block
 doneOut: done' = if round = nbrRounds -1;
 end facet body AES;

end package aes;

 51

C.2 Standard Modulation Specifications

Like the AES specification, this specification of modulation functions attempts to capture
an initial definition of the variety of modulation functions. Further refinement is in order.

 52

//----
// Modulator Package
//
// Author: Perry Alexander
// Date: Mon Dec 17 18:17:11 CST 2007
// Revision:
// Thu Jun 19 23:42:00 CST 2008 -- Separated the function
// of the modulator from
// the underlying state sequencing mechanism.
// Wed Jun 18 12:47:00 CST 2008 -- Added a modulator
// domain that partially instantiates the async domain.
// Mon Dec 17 22:39:54 CST 2007 -- Added binary encodings
// to accompany quad encodings
// Tue Dec 18 17:09:30 CST 2007 -- Added new keying functions
// and removed general quad and binary structures.
// Worked through some other comm issues
// Thu Dec 20 14:33:09 CST 2007 -- Added new keying functions
// for 16-value qam, qfm, and qpsk modulation.
// Todo:
// - The instantiation technique used for defining the modulator domain
// needs to be checked.
// - New keying functions need to be sanity checked
// - Further parameterize keying and modulation functions to allow for
// arbitrary M (where M is a power of 2).
// - MQAM still needs to be defined unless MQAM is what I'm calling QAM
// below.
//----

package modulator()::static is

 // Constant values

 twoPi :: real is 2*pi;
 sqrt2 :: real is abs(sqrt(2));

 // Basic parameterized modulation function. am, fm, and ps are the
 // amplitude multiplier, frequency shift and phase shift respectively.
 // Set ip to false to include a 90 degree phase shift.
 // f is the carrier frequency and t is time.

 modulate(ip::boolean; am,fm,ps::real; f,t::real)::real is
 if ip then am*sin(twoPi*(f+fm)*t+ps)
 else am*cos(twoPi*(f+fm)*t+ps)
 end if;

 // Basic modulation functions for AM, FM and PSK. k is the keying
 // function that translates the input symbol to a
 // real value for modulation.
 // s is the input symbol to be modulated. Thus, k(s) gives the value
 // to be modulated.
 // ip, f, and t play the same role as in the modulate
 // function - 90 phase shift, carrier frequency, and time.
 // The universally quantified type, T, is the input type that
 // will not be known until the function is instantiated.

 amMod[T::type](k::<*(x::T)::real*>; ip::boolean;
 f::real; t::real; s::T)::real is

 53

 modulate(ip,k(s),0.0,0.0,f,t);

 fmMod[T::type](k::<*(x::T)::real*>; ip::boolean;
 f::real; t::real; s::T)::real is
 modulate(ip,1.0,k(s),0.0,f,t);

 pskMod[T::type](k::<*(x::T)::real*>; ip::boolean;
 f::real; t::real; s::T)::real is
 modulate(ip,1.0,1.0,k(s),f,t);

 // Example key functions for quadrature style modulation. kam, kfm
 // kpsk are for qam, qfm, and qpsk modulation respectively.

 kam(b::bit)::real is b;
 kfm(b::bit)::real is if %b then 5e3 else 0 end if;
 kpsk(b::bit)::real is if %b then pi else -pi end if;

 // Modulator functions for specific quatrature modulation schemes
 // defined using basic modulation functions

 qamMod(f,t::real;s::word(2))::real is
 amMod(kam,true,f,t,s(0))+amMod(kam,false,f,t,s(1));

 qfmMod(f,t::real;s::word(2))::real is
 fmMod(kfm,true,f,t,s(0))+fmMod(kfm,false,f,t,s(1));

 qpskMod(f,t::real;s::word(2))::real is
 pskMod(kpsk,true,f,t,s(0))+pskMod(kpsk,false,f,t,s(1));

 // Modulation facets defining discrete time modulation
 // components. Note that outputs are real and inputs are
 // two-bit sequences. All modulators are currently defined
 // in discrete time, but could easily be defined in
 // continuous time. The reference to time in the modulation
 // functions makes simple state-based specifications difficult
 // to write without specifying a type for state.

 // A modulator component is an state_based component with
 // an additional design parameter to set the carrier frequency.
 // Thus, the modulator function domain is simply the
 // discrete_time domain with an input and output, plus a
 // design parameter for specifying carrier frequency.
 // We choose discrete_time over state_based because a time
 // value is required for the modulation function.
 domain modulator_function
 [D,R::type]
 (i::input D; o::output R; f::design real)::discrete_time is
 begin
 end domain modulator_function;

 // Define functional specifications for each modulator type
 // without regard to the underlying control model.
 // Note that t is defined by the discrete_time domain.
 facet qam_mod_function::modulator_function is
 begin
 o' = en*qamMod(f,t,i);
 end facet qam_mod_function;

 54

 facet qfm_mod_function::twoPhase is
 begin
 o' = en*qfmMod(f,t,i);
 end facet qfm_mod_function;

 facet qpsk_mod_function::twoPhase is
 begin
 o' = en*qpskMod(f,t,i);
 end facet qpsk_mod_function;

 // To define a modulator using a specific underlying communication
 // architecture, form the product of the modulator function with a
 // communication strategy. For example, the async package defines
 // a strategy called asyncMinus that only defines state sequencing

 // async_comm adds nothing to the asyncMinus definition. It can, but
 // for this initial example, there is no need to do so.
 facet modulator_control::asyncMinus is
 begin
 end facet modulator_control;

 // Now define some facet compositions that make modulators
 // asynchronous. The asynchronous modulator components are
 // the conjunction of the modulator function and the underlying
 // control architecture.
 qam_mod_async
 [D,R::type]
 (i::input D;
 o::output R;
 go::input bit;
 ready::input bit)::discrete_time is
 qam_mod_function[D,R::type](i::input D; o::output R; f::real) *
 modulator_control(go::input bit; ready::input bit);

 qfm_mod_async
 [D,R::type]
 (i::input D;
 o::output R;
 go::input bit;
 ready::input bit)::discrete_time is
 qfm_mod_function[D,R::type](i::input D; o::output R; f::real) *
 modulator_control(go::input bit; ready::input bit);

 qpsk_mod_async
 [D,R::type]
 (i::input D;
 o::output R;
 go::input bit;
 ready::input bit)::discrete_time is
 qpsk_mod_function[D,R::type](i::input D; o::output R; f::real) *
 modulator_control(go::input bit; ready::input bit);

 // An alternate aproach would combine the modulator
 // domain with the asynchronous domain at the domain level.

 // BAM, BFM, and BPSK can be defined similarly using the same keying

 55

 // functions and the same modulation functions.

 bamMod(f,t::real; s::bit)::real is amMod(kam,true,f,t,s);

 bfmMod(f,t::real; s::bit)::real is fmMod(kfm,true,f,t,s);

 bpskMod(f,t::real; s::bit)::real is pskMod(kpsk,true,f,t,s);

 // Modulation facets for binary techniques follow similarly

 facet bam_mod_function::modulator_function is
 begin
 o' = en*bamMod(f,t,i);
 end facet bam_mod_function;

 facet bfm_mod_function::modulator_function is
 begin
 o' = en*bfmMod(f,t,i);
 end facet bfm_mod_function;

 facet bpsk_mod_function::modulator_function is
 begin
 o' = en*bpskMod(f,t,i);
 end facet bpsk_mod_function;

 bam_mod_async
 [D,R::type]
 (i::input D;
 o::output R;
 go::input bit;
 ready::input bit)::discrete_time is
 bam_mod_function[D,R::type](i::input D; o::output R; f::real) *
 modulator_control(go::input bit; ready::input bit);

 bfm_mod_async
 [D,R::type]
 (i::input D;
 o::output R;
 go::input bit;
 ready::input bit)::discrete_time is
 bfm_mod_function[D,R::type](i::input D; o::output R; f::real) *
 modulator_control(go::input bit; ready::input bit);

 bpsk_mod_async
 [D,R::type]
 (i::input D;
 o::output R;
 go::input bit;
 ready::input bit)::discrete_time is
 bpsk_mod_function[D,R::type](i::input D; o::output R; f::real) *
 modulator_control(go::input bit; ready::input bit);

 // Allowing more bits in the input symbol requires different keying
 // functions.

 angle(sc::natural)::real is twoPi/sc;

 56

 // Define some constant key functions for the various modulation
 // schemes. Note that these have not been checked!!

 kamX(i::word(4))::real is sin(bv2nat(i)*angle(16));
 kamY(i::word(4))::real is cos(bv2nat(i)*angle(16));
 kfmX(i::word(4))::real is sin(bv2nat(i)*angle(16))*5e3;
 kfmY(i::word(4))::real is cas(bv2nat(i)*angle(16))*5e3;
 kpskX(i::word(4))::real is sin(bv2nat(i)*angle(16))*pi;
 kpskY(i::word(4))::real is sin(bv2nat(i)*angle(16))*pi;

 // Modulator functions for specific quatrature modulation schemes
 // defined using basic modulation functions

 amMod16(f,t::real;s::word(2))::real is
 amMod(kamX,true,f,t,s sub [0,1])+amMod(kamY,false,f,t,s sub [2,3]);

 fmMod16(f,t::real;s::word(2))::real is
 fmMod(kfmX,true,f,t,s sub [0,1])+fmMod(kfmY,false,f,t,s sub [2,3]);

 pskMod16(f,t::real;s::word(2))::real is
 pskMod(kpskX,true,f,t,s sub [0,1])+pskMod(kpskY,false,f,t,s sub
[2,3]);

 // These can be further parameterized to perform m-ary modulation
 // as longas the constellations fit the schemes defining by keying
functions. It
 // is quite simple to define additional keying functions for different
 // constellation shapes.

end package modulator;

 57

List of Acronyms, Abbreviations, and Symbols

Acronym Description

AES Advanced Encryption Standard
AM Amplitude Modulation
ASIC Application Specific Integrated Circuit
ASK Amplitude Shift Modulation
AST Abstract Syntax Tree
BPSK Binary Phase Shift Modulation
CORBA Common Object Request Broker Architecture
CW Continuous Wave Modulation
DSP Digital Signal Processor
FM Frequency Modulation
FPGA Field Programmable Gate Array
GPP General Purpose Processor
JTRS Joint Tactical Radio Systems
PSK Phase Shift Modulation
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Modulation
SCA Software Communications Architecture\
SDR Software Defined Radio
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits

